A Cloud Resource Prediction and Migration Method for Container Scheduling

Siyuan Zheng, Fenfen Huang, Chen Li, Haobin Wang
{"title":"A Cloud Resource Prediction and Migration Method for Container Scheduling","authors":"Siyuan Zheng, Fenfen Huang, Chen Li, Haobin Wang","doi":"10.1109/TOCS53301.2021.9689034","DOIUrl":null,"url":null,"abstract":"With the continuous evolution of cloud-native, more and more applications are deployed on the container. As the business platform runs many container instances and has complex dependency relationships, the load of cloud resources fluctuates due to service status, resulting in task scheduling difficulties and affecting service stability. In this paper, we propose a container resource migration scheduling algorithm called UVPOC, and establish a two-level scheduler mechanism to monitor global real-time resources, choosing LTSM to predict the trend of the dominant resource utilization and determine whether to perform container migration or Virtual Machines (VMs) pre-boot to implement resource allocation. In addition, we choose CloudSim open source tool for simulation experiments. The results show that our UVPOC algorithm can improve the global resource utilization of containers and virtual machines, and reduce the energy consumption of data center resources.","PeriodicalId":360004,"journal":{"name":"2021 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TOCS53301.2021.9689034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

With the continuous evolution of cloud-native, more and more applications are deployed on the container. As the business platform runs many container instances and has complex dependency relationships, the load of cloud resources fluctuates due to service status, resulting in task scheduling difficulties and affecting service stability. In this paper, we propose a container resource migration scheduling algorithm called UVPOC, and establish a two-level scheduler mechanism to monitor global real-time resources, choosing LTSM to predict the trend of the dominant resource utilization and determine whether to perform container migration or Virtual Machines (VMs) pre-boot to implement resource allocation. In addition, we choose CloudSim open source tool for simulation experiments. The results show that our UVPOC algorithm can improve the global resource utilization of containers and virtual machines, and reduce the energy consumption of data center resources.
一种用于容器调度的云资源预测与迁移方法
随着云原生的不断发展,越来越多的应用程序部署在容器上。由于业务平台运行的容器实例较多,依赖关系复杂,云资源的负载会因服务状态而波动,导致任务调度困难,影响服务的稳定性。本文提出了一种称为UVPOC的容器资源迁移调度算法,并建立了两级调度器机制来监控全局实时资源,选择LTSM来预测优势资源的利用趋势,并确定是执行容器迁移还是虚拟机(vm)预引导来实现资源分配。此外,我们选择CloudSim开源工具进行仿真实验。结果表明,我们的UVPOC算法可以提高容器和虚拟机的全局资源利用率,降低数据中心资源的能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信