PCA-Based On-Line Diagnosis of Induction Motor Stator Fault Feed by PWM Inverter

J. Martins, V. Pires, A. Pires
{"title":"PCA-Based On-Line Diagnosis of Induction Motor Stator Fault Feed by PWM Inverter","authors":"J. Martins, V. Pires, A. Pires","doi":"10.1109/ISIE.2006.295948","DOIUrl":null,"url":null,"abstract":"In this paper an automatic PCA (principal component analysis) based algorithm is presented for an on-line diagnostics of three-phase PWM feed induction motor stator fault. The analysis of the fault is derived from the two first principal components of the power inverter output current alphabeta-vector patterns. The obtained eigenvalues are used to discern if the motor is healthy or not, and the correspondent eigenvectors can infer the phase in which the fault occurs. The method is simple to implement and is able to indicate the extend of the fault; rather then only detect its presence","PeriodicalId":296467,"journal":{"name":"2006 IEEE International Symposium on Industrial Electronics","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Symposium on Industrial Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2006.295948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

In this paper an automatic PCA (principal component analysis) based algorithm is presented for an on-line diagnostics of three-phase PWM feed induction motor stator fault. The analysis of the fault is derived from the two first principal components of the power inverter output current alphabeta-vector patterns. The obtained eigenvalues are used to discern if the motor is healthy or not, and the correspondent eigenvectors can infer the phase in which the fault occurs. The method is simple to implement and is able to indicate the extend of the fault; rather then only detect its presence
基于pca的PWM逆变器异步电机定子故障在线诊断
本文提出了一种基于主成分分析的三相PWM馈电异步电动机定子故障在线诊断算法。故障的分析是由电源逆变器输出电流α - β向量模式的两个前主分量推导出来的。得到的特征值用于判断电机是否健康,相应的特征向量可以推断出故障发生的相位。该方法实现简单,能够指示故障的范围;而不是仅仅检测它的存在
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信