Research on Storage and Processing Method for Renewable Energy Big Data

Tie Li, Junci Tang, Feng Jiang, Xiaopeng Xu, Cheng Li, Tao Ding
{"title":"Research on Storage and Processing Method for Renewable Energy Big Data","authors":"Tie Li, Junci Tang, Feng Jiang, Xiaopeng Xu, Cheng Li, Tao Ding","doi":"10.1109/ISGT-Asia.2019.8881713","DOIUrl":null,"url":null,"abstract":"With the development of renewable energy, the amount of renewable energy data is growing rapidly. Renewable energy data is either large in volume or low in value density. Traditional data processing methods cannot meet the rapid query for state monitoring, evaluation and prediction. The need for power system analysis using renewable energy big data is thus urgent. This paper studies the storage and processing methods of big data in power systems with high proportion of renewable energy. Based on the analysis of renewable energy data characteristics and distributed data storage methods, this paper presents a general processing and storage framework for renewable energy big data.","PeriodicalId":257974,"journal":{"name":"2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT-Asia.2019.8881713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of renewable energy, the amount of renewable energy data is growing rapidly. Renewable energy data is either large in volume or low in value density. Traditional data processing methods cannot meet the rapid query for state monitoring, evaluation and prediction. The need for power system analysis using renewable energy big data is thus urgent. This paper studies the storage and processing methods of big data in power systems with high proportion of renewable energy. Based on the analysis of renewable energy data characteristics and distributed data storage methods, this paper presents a general processing and storage framework for renewable energy big data.
可再生能源大数据存储与处理方法研究
随着可再生能源的发展,可再生能源数据量快速增长。可再生能源数据要么量大,要么值密度低。传统的数据处理方法无法满足对状态监测、评估和预测的快速查询。因此,利用可再生能源大数据对电力系统进行分析的需求迫在眉睫。本文研究了高比例可再生能源电力系统的大数据存储与处理方法。在分析可再生能源数据特点和分布式数据存储方法的基础上,提出了可再生能源大数据的通用处理和存储框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信