Interactive Volumetric Region Growing for Brain Tumor Segmentation on MRI using WebGL

Jonas Kordt, Paul Brachmann, Daniel Limberger, C. Lippert
{"title":"Interactive Volumetric Region Growing for Brain Tumor Segmentation on MRI using WebGL","authors":"Jonas Kordt, Paul Brachmann, Daniel Limberger, C. Lippert","doi":"10.1145/3485444.3487640","DOIUrl":null,"url":null,"abstract":"Volumetric segmentation of medical images is an essential tool in treatment planning and many longitudinal studies. While machine learning approaches promise to fully automate it, they most often still depend on manually labeled training data. We thus present a GPU-based volumetric region growing approach for semi-automatic brain tumor segmentation that can be interactively tuned. Additionally, we propose multidimensional transfer functions for ray tracing that allow users to judge the quality of the grown region. Our implementation produces a full brain tumor segmentation within a few milliseconds on consumer hardware. The visualization uses adaptive resolution scaling and progressive, asynchronous shading computation to maintain a stable 60 Hz refresh rate.","PeriodicalId":362468,"journal":{"name":"The 26th International Conference on 3D Web Technology","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 26th International Conference on 3D Web Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3485444.3487640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Volumetric segmentation of medical images is an essential tool in treatment planning and many longitudinal studies. While machine learning approaches promise to fully automate it, they most often still depend on manually labeled training data. We thus present a GPU-based volumetric region growing approach for semi-automatic brain tumor segmentation that can be interactively tuned. Additionally, we propose multidimensional transfer functions for ray tracing that allow users to judge the quality of the grown region. Our implementation produces a full brain tumor segmentation within a few milliseconds on consumer hardware. The visualization uses adaptive resolution scaling and progressive, asynchronous shading computation to maintain a stable 60 Hz refresh rate.
基于WebGL的交互式体积区域生长在MRI上的脑肿瘤分割
医学图像的体积分割是治疗计划和许多纵向研究的重要工具。虽然机器学习方法承诺完全自动化,但它们通常仍然依赖于手动标记的训练数据。因此,我们提出了一种基于gpu的体积区域生长方法,用于半自动脑肿瘤分割,可以进行交互式调整。此外,我们提出了用于光线追踪的多维传递函数,允许用户判断生长区域的质量。我们的实现在几毫秒内在消费者硬件上产生一个完整的脑肿瘤分割。可视化使用自适应分辨率缩放和渐进式异步着色计算来保持稳定的60 Hz刷新率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信