An Entity Class-Dependent Discriminative Mixture Model for Cumulative Citation Recommendation

Jingang Wang, Dandan Song, Qifan Wang, Zhiwei Zhang, Luo Si, L. Liao, Chin-Yew Lin
{"title":"An Entity Class-Dependent Discriminative Mixture Model for Cumulative Citation Recommendation","authors":"Jingang Wang, Dandan Song, Qifan Wang, Zhiwei Zhang, Luo Si, L. Liao, Chin-Yew Lin","doi":"10.1145/2766462.2767698","DOIUrl":null,"url":null,"abstract":"This paper studies Cumulative Citation Recommendation (CCR) for Knowledge Base Acceleration (KBA). The CCR task aims to detect potential citations of a set of target entities with priorities from a volume of temporally-ordered stream corpus. Previous approaches for CCR that build an individual relevance model for each entity fail to handle unseen entities without annotation. A baseline solution is to build a global entity-unspecific model for all entities regardless of the relationship information among entities, which cannot guarantee to achieve satisfactory result for each entity. In this paper, we propose a novel entity class-dependent discriminative mixture model by introducing a latent entity class layer to model the correlations between entities and latent entity classes. The model can better adjust to different types of entities and achieve better performance when dealing with a broad range of entities. An extensive set of experiments has been conducted on TREC-KBA-2013 dataset, and the experimental results demonstrate that the proposed model can achieve the state-of-the-art performance.","PeriodicalId":297035,"journal":{"name":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2766462.2767698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper studies Cumulative Citation Recommendation (CCR) for Knowledge Base Acceleration (KBA). The CCR task aims to detect potential citations of a set of target entities with priorities from a volume of temporally-ordered stream corpus. Previous approaches for CCR that build an individual relevance model for each entity fail to handle unseen entities without annotation. A baseline solution is to build a global entity-unspecific model for all entities regardless of the relationship information among entities, which cannot guarantee to achieve satisfactory result for each entity. In this paper, we propose a novel entity class-dependent discriminative mixture model by introducing a latent entity class layer to model the correlations between entities and latent entity classes. The model can better adjust to different types of entities and achieve better performance when dealing with a broad range of entities. An extensive set of experiments has been conducted on TREC-KBA-2013 dataset, and the experimental results demonstrate that the proposed model can achieve the state-of-the-art performance.
基于实体分类的累积引文推荐判别混合模型
本文研究了知识库加速(KBA)中的累积引文推荐(CCR)。CCR任务旨在从大量临时有序的流语料库中检测一组具有优先级的目标实体的潜在引用。以前的CCR方法为每个实体构建单独的关联模型,但在没有注释的情况下无法处理看不见的实体。基线解决方案是不考虑实体之间的关系信息,为所有实体构建一个全局实体非特定模型,不能保证每个实体都能得到满意的结果。本文通过引入潜在实体类层来建模实体与潜在实体类之间的相关性,提出了一种新的实体类依赖的判别混合模型。该模型可以更好地适应不同类型的实体,并在处理广泛的实体时获得更好的性能。在TREC-KBA-2013数据集上进行了大量的实验,实验结果表明该模型可以达到最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信