Automorphisms of Zero Divisor Graphs of Power Four Radical Zero Completely Primary Finite Rings

Lao Hussein Mude, O. M. Oduor, O. M. Onyango
{"title":"Automorphisms of Zero Divisor Graphs of Power Four Radical Zero Completely Primary Finite Rings","authors":"Lao Hussein Mude, O. M. Oduor, O. M. Onyango","doi":"10.9734/arjom/2023/v19i8693","DOIUrl":null,"url":null,"abstract":"Let R be a commutative unital finite rings and Z(R) be its set of zero divisors. The study of automorphisms of algebraic structures via zero divisor graphs is still an active area of research. Perhaps, because of the fact that automorphisms have got real life application in capturing the symmetries of algebraic structures. In this study, the automorphisms zero divisor graphs of such rings in which the product of any four zero divisor is zero has been determined.","PeriodicalId":281529,"journal":{"name":"Asian Research Journal of Mathematics","volume":"742 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Research Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/arjom/2023/v19i8693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let R be a commutative unital finite rings and Z(R) be its set of zero divisors. The study of automorphisms of algebraic structures via zero divisor graphs is still an active area of research. Perhaps, because of the fact that automorphisms have got real life application in capturing the symmetries of algebraic structures. In this study, the automorphisms zero divisor graphs of such rings in which the product of any four zero divisor is zero has been determined.
幂四根零完全初等有限环的零因子图的自同构
设R是一个可交换的单位有限环,Z(R)是它的零因子集。利用零因子图研究代数结构的自同构仍然是一个活跃的研究领域。也许,因为自同构在实际生活中得到了应用,可以捕捉代数结构的对称性。本文确定了任意四个零因子之积为零的环的自同构零因子图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信