A hybrid approach for retrieving diverse social images of landmarks

Duc-Tien Dang-Nguyen, Luca Piras, G. Giacinto, G. Boato, F. D. Natale
{"title":"A hybrid approach for retrieving diverse social images of landmarks","authors":"Duc-Tien Dang-Nguyen, Luca Piras, G. Giacinto, G. Boato, F. D. Natale","doi":"10.1109/ICME.2015.7177486","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel method that can produce a visual description of a landmark by choosing the most diverse pictures that best describe all the details of the queried location from community-contributed datasets. The main idea of this method is to filter out non-relevant images at a first stage and then cluster the images according to textual descriptors first, and then to visual descriptors. The extraction of images from different clusters according to a measure of user's credibility, allows obtaining a reliable set of diverse and relevant images. Experimental results performed on the MediaEval 2014 “Retrieving Diverse Social Images” dataset show that the proposed approach can achieve very good performance outperforming state-of-art techniques.","PeriodicalId":146271,"journal":{"name":"2015 IEEE International Conference on Multimedia and Expo (ICME)","volume":"741 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2015.7177486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

In this paper, we present a novel method that can produce a visual description of a landmark by choosing the most diverse pictures that best describe all the details of the queried location from community-contributed datasets. The main idea of this method is to filter out non-relevant images at a first stage and then cluster the images according to textual descriptors first, and then to visual descriptors. The extraction of images from different clusters according to a measure of user's credibility, allows obtaining a reliable set of diverse and relevant images. Experimental results performed on the MediaEval 2014 “Retrieving Diverse Social Images” dataset show that the proposed approach can achieve very good performance outperforming state-of-art techniques.
一种用于检索各种社会地标图像的混合方法
在本文中,我们提出了一种新的方法,可以通过从社区提供的数据集中选择最能描述所查询位置的所有细节的最多样化的图片来生成地标的视觉描述。该方法的主要思想是在第一阶段过滤掉不相关的图像,然后根据文本描述符对图像进行聚类,然后根据视觉描述符对图像进行聚类。根据用户可信度的度量,从不同的聚类中提取图像,可以获得一组可靠的不同和相关的图像。在MediaEval 2014“检索多样化社会图像”数据集上进行的实验结果表明,所提出的方法可以取得非常好的性能,优于最先进的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信