Jonathan Falk, David Hellmanns, Ben W. Carabelli, N. Nayak, Frank Dürr, Stephan Kehrer, K. Rothermel
{"title":"NeSTiNg: Simulating IEEE Time-sensitive Networking (TSN) in OMNeT++","authors":"Jonathan Falk, David Hellmanns, Ben W. Carabelli, N. Nayak, Frank Dürr, Stephan Kehrer, K. Rothermel","doi":"10.1109/NetSys.2019.8854500","DOIUrl":null,"url":null,"abstract":"IEEE 802.1 Time-sensitive Networking (TSN) enables real-time communication with deterministically bounded network delay and jitter over standard IEEE 802.3 networks (“Ethernet”). In particular, TSN specifies a time-triggered scheduling mechanism in IEEE Std 802.1Qbv implemented by switches to control when outgoing queues get access to switch ports. Besides this time-triggered scheduling mechanism, other scheduling mechanisms can be active in the network at the same time including priority queuing and a credit-based shaper. Moreover, further supporting mechanisms such as the possibility to interrupt frames already in transmission (frame preemption) are specified by the TSN standards. Overall, this leads to a complex network infrastructure transporting both, real-time and non-real-time traffic in one converged network, making it hard to analyze the behavior of converged networks. To facilitate the analysis of TSN networks, we present TSN-specific extensions to the popular OMNeT++/INET framework for network simulations in this paper including, in particular, the time-triggered scheduling mechanism of IEEE Std 802.1Qbv. Besides the design of the TSN simulator, we present a proof-of-concept implementation and exemplary evaluation of TSN networks.","PeriodicalId":291245,"journal":{"name":"2019 International Conference on Networked Systems (NetSys)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"92","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Networked Systems (NetSys)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NetSys.2019.8854500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 92
Abstract
IEEE 802.1 Time-sensitive Networking (TSN) enables real-time communication with deterministically bounded network delay and jitter over standard IEEE 802.3 networks (“Ethernet”). In particular, TSN specifies a time-triggered scheduling mechanism in IEEE Std 802.1Qbv implemented by switches to control when outgoing queues get access to switch ports. Besides this time-triggered scheduling mechanism, other scheduling mechanisms can be active in the network at the same time including priority queuing and a credit-based shaper. Moreover, further supporting mechanisms such as the possibility to interrupt frames already in transmission (frame preemption) are specified by the TSN standards. Overall, this leads to a complex network infrastructure transporting both, real-time and non-real-time traffic in one converged network, making it hard to analyze the behavior of converged networks. To facilitate the analysis of TSN networks, we present TSN-specific extensions to the popular OMNeT++/INET framework for network simulations in this paper including, in particular, the time-triggered scheduling mechanism of IEEE Std 802.1Qbv. Besides the design of the TSN simulator, we present a proof-of-concept implementation and exemplary evaluation of TSN networks.