Investigating occupancy profiles using convolutional neural networks

J. Park, Jianli Chen, Xin Jin, Z. Nagy
{"title":"Investigating occupancy profiles using convolutional neural networks","authors":"J. Park, Jianli Chen, Xin Jin, Z. Nagy","doi":"10.1145/3360322.3360989","DOIUrl":null,"url":null,"abstract":"In this paper, we implement a convolutional neural networks (CNN) based autoencoder to investigate occupancy profiles. We use the American time use survey (ATUS) data, which contains 191,558 schedules with binary occupancy information. Our results suggest that the trained filters provide an important insight of occupancy profiles (i.e., dominant and distinct patterns), and the latent space compresses the profiles with representative information.","PeriodicalId":128826,"journal":{"name":"Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3360322.3360989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we implement a convolutional neural networks (CNN) based autoencoder to investigate occupancy profiles. We use the American time use survey (ATUS) data, which contains 191,558 schedules with binary occupancy information. Our results suggest that the trained filters provide an important insight of occupancy profiles (i.e., dominant and distinct patterns), and the latent space compresses the profiles with representative information.
用卷积神经网络调查占用情况
在本文中,我们实现了一个基于卷积神经网络(CNN)的自编码器来研究占用曲线。我们使用美国时间使用调查(ATUS)数据,其中包含191,558个带有二进制占用信息的时间表。我们的研究结果表明,训练后的过滤器提供了一个重要的占用概况(即占主导地位的和独特的模式)的洞察力,并且潜在空间压缩了具有代表性信息的概况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信