Algorithmic Learning Foundations for Common Law

Jason D. Hartline, Daniel W. Linna, Liren Shan, Alex Tang
{"title":"Algorithmic Learning Foundations for Common Law","authors":"Jason D. Hartline, Daniel W. Linna, Liren Shan, Alex Tang","doi":"10.1145/3511265.3550438","DOIUrl":null,"url":null,"abstract":"This paper looks at a common law legal system as a learning algorithm, models specific features of legal proceedings, and asks whether this system learns efficiently. A particular feature of our model is explicitly viewing various aspects of court proceedings as learning algorithms. This viewpoint enables directly pointing out that when the costs of going to court are not commensurate with the benefits of going to court, there is a failure of learning and inaccurate outcomes will persist in cases that settle. Specifically, cases are brought to court at an insufficient rate. On the other hand, when individuals can be compelled or incentivized to bring their cases to court, the system can learn and inaccuracy vanishes over time.","PeriodicalId":254114,"journal":{"name":"Proceedings of the 2022 Symposium on Computer Science and Law","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 Symposium on Computer Science and Law","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3511265.3550438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper looks at a common law legal system as a learning algorithm, models specific features of legal proceedings, and asks whether this system learns efficiently. A particular feature of our model is explicitly viewing various aspects of court proceedings as learning algorithms. This viewpoint enables directly pointing out that when the costs of going to court are not commensurate with the benefits of going to court, there is a failure of learning and inaccurate outcomes will persist in cases that settle. Specifically, cases are brought to court at an insufficient rate. On the other hand, when individuals can be compelled or incentivized to bring their cases to court, the system can learn and inaccuracy vanishes over time.
普通法的算法学习基础
本文将普通法法律制度视为一种学习算法,对法律程序的具体特征进行建模,并探讨该系统是否有效地学习。我们模型的一个特点是明确地将法庭程序的各个方面视为学习算法。这一观点可以直接指出,当上法庭的成本与上法庭的收益不相称时,就存在学习的失败,在和解的案件中,不准确的结果将持续存在。具体来说,案件提交法院的比率不足。另一方面,当个人被强迫或激励将案件诉诸法庭时,系统可以学习,随着时间的推移,不准确性就会消失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信