Improving the Performance of Heuristic Searches with Judicious Initial Point Selection

S. Tahaee, A. Jahangir, H. Habibi-Masouleh
{"title":"Improving the Performance of Heuristic Searches with Judicious Initial Point Selection","authors":"S. Tahaee, A. Jahangir, H. Habibi-Masouleh","doi":"10.1109/SEC.2008.65","DOIUrl":null,"url":null,"abstract":"In this paper we claim that local optimization can produce proper start point for genetic search. We completely test this claim on partitioning problem and on the performance of genetic search in a real problem that is finding aggregation tree in the sensor networks. The presented method (named Tendency algorithm) increases the performance of heuristic searches, and can be used in parallel with other tuning methods. The paper justifies the logic behind tendency algorithm by measuring the \"entropy\" of solution (in regard to optimal solution), and by numerous empirical tests.","PeriodicalId":231129,"journal":{"name":"2008 Fifth IEEE International Symposium on Embedded Computing","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fifth IEEE International Symposium on Embedded Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC.2008.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper we claim that local optimization can produce proper start point for genetic search. We completely test this claim on partitioning problem and on the performance of genetic search in a real problem that is finding aggregation tree in the sensor networks. The presented method (named Tendency algorithm) increases the performance of heuristic searches, and can be used in parallel with other tuning methods. The paper justifies the logic behind tendency algorithm by measuring the "entropy" of solution (in regard to optimal solution), and by numerous empirical tests.
明智的初始点选择改进启发式搜索的性能
本文提出了局部优化可以为遗传搜索提供合适的起始点。我们在划分问题和在传感器网络中寻找聚合树的实际问题中对遗传搜索的性能进行了完整的测试。所提出的方法(称为Tendency算法)提高了启发式搜索的性能,并且可以与其他调优方法并行使用。本文通过测量解决方案(关于最优解决方案)的“熵”,并通过大量的实证检验来证明趋势算法背后的逻辑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信