Sparse Data Generation for Particle-Based Simulation of Hadronic Jets in the LHC

B. Orzari, T. Tomei, M. Pierini, M. Touranakou, Javier Mauricio Duarte, R. Kansal, J. Vlimant, D. Gunopulos
{"title":"Sparse Data Generation for Particle-Based Simulation of Hadronic Jets in the LHC","authors":"B. Orzari, T. Tomei, M. Pierini, M. Touranakou, Javier Mauricio Duarte, R. Kansal, J. Vlimant, D. Gunopulos","doi":"10.52591/202107246","DOIUrl":null,"url":null,"abstract":"We develop a generative neural network for the generation of sparse data in particle physics using a permutation-invariant and physics-informed loss function. The input dataset used in this study consists of the particle constituents of hadronic jets due to its sparsity and the possibility of evaluating the network’s ability to accurately describe the particles and jets properties. A variational autoencoder composed of convolutional layers in the encoder and decoder is used as the generator. The loss function consists of a reconstruction error term and the Kullback-Leibler divergence between the output of the encoder and the latent vector variables. The permutation-invariant loss on the particles’ properties is combined with two mean-squared error terms that measure the difference between input and output jets mass and transverse momentum, which improves the network’s generation capability as it imposes physics constraints, allowing the model to learn the kinematics of the jets.","PeriodicalId":196347,"journal":{"name":"LatinX in AI at International Conference on Machine Learning 2021","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"LatinX in AI at International Conference on Machine Learning 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52591/202107246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We develop a generative neural network for the generation of sparse data in particle physics using a permutation-invariant and physics-informed loss function. The input dataset used in this study consists of the particle constituents of hadronic jets due to its sparsity and the possibility of evaluating the network’s ability to accurately describe the particles and jets properties. A variational autoencoder composed of convolutional layers in the encoder and decoder is used as the generator. The loss function consists of a reconstruction error term and the Kullback-Leibler divergence between the output of the encoder and the latent vector variables. The permutation-invariant loss on the particles’ properties is combined with two mean-squared error terms that measure the difference between input and output jets mass and transverse momentum, which improves the network’s generation capability as it imposes physics constraints, allowing the model to learn the kinematics of the jets.
大型强子对撞机中基于粒子的强子射流模拟稀疏数据生成
我们开发了一个生成神经网络,用于生成粒子物理中的稀疏数据,使用置换不变和物理通知损失函数。本研究中使用的输入数据集由强子射流的粒子成分组成,因为它的稀疏性和评估网络准确描述粒子和射流特性的能力的可能性。在编码器和解码器中使用由卷积层组成的变分自编码器作为发生器。损失函数由重构误差项和编码器输出与潜在向量变量之间的Kullback-Leibler散度组成。粒子性质的排列不变损失与两个均方误差项相结合,测量输入和输出射流质量和横向动量之间的差异,这提高了网络的生成能力,因为它施加了物理约束,允许模型学习射流的运动学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信