Hölder-Logarithmic type approximation for nonlinear backward parabolic equations connected with a pseudo-differential operator

Dinh Nguyen Duy Hai
{"title":"Hölder-Logarithmic type approximation for nonlinear backward parabolic equations connected with a pseudo-differential operator","authors":"Dinh Nguyen Duy Hai","doi":"10.3934/cpaa.2022043","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this paper, we deal with the backward problem for nonlinear parabolic equations involving a pseudo-differential operator in the <inline-formula><tex-math id=\"M1\">\\begin{document}$ n $\\end{document}</tex-math></inline-formula>-dimensional space. We prove that the problem is ill-posed in the sense of Hadamard, i.e., the solution, if it exists, does not depend continuously on the data. To regularize the problem, we propose two modified versions of the so-called optimal filtering method of Seidman [T.I. Seidman, Optimal filtering for the backward heat equation, SIAM J. Numer. Anal., <b>33</b> (1996), 162–170]. According to different a priori assumptions on the regularity of the exact solution, we obtain some sharp optimal estimates of the Hölder-Logarithmic type in the Sobolev space <inline-formula><tex-math id=\"M2\">\\begin{document}$ H^q(\\mathbb{R}^n) $\\end{document}</tex-math></inline-formula>.</p>","PeriodicalId":435074,"journal":{"name":"Communications on Pure &amp; Applied Analysis","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure &amp; Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2022043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we deal with the backward problem for nonlinear parabolic equations involving a pseudo-differential operator in the \begin{document}$ n $\end{document}-dimensional space. We prove that the problem is ill-posed in the sense of Hadamard, i.e., the solution, if it exists, does not depend continuously on the data. To regularize the problem, we propose two modified versions of the so-called optimal filtering method of Seidman [T.I. Seidman, Optimal filtering for the backward heat equation, SIAM J. Numer. Anal., 33 (1996), 162–170]. According to different a priori assumptions on the regularity of the exact solution, we obtain some sharp optimal estimates of the Hölder-Logarithmic type in the Sobolev space \begin{document}$ H^q(\mathbb{R}^n) $\end{document}.

伪微分算子连接的非线性倒抛物方程的Hölder-Logarithmic型近似
In this paper, we deal with the backward problem for nonlinear parabolic equations involving a pseudo-differential operator in the \begin{document}$ n $\end{document}-dimensional space. We prove that the problem is ill-posed in the sense of Hadamard, i.e., the solution, if it exists, does not depend continuously on the data. To regularize the problem, we propose two modified versions of the so-called optimal filtering method of Seidman [T.I. Seidman, Optimal filtering for the backward heat equation, SIAM J. Numer. Anal., 33 (1996), 162–170]. According to different a priori assumptions on the regularity of the exact solution, we obtain some sharp optimal estimates of the Hölder-Logarithmic type in the Sobolev space \begin{document}$ H^q(\mathbb{R}^n) $\end{document}.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信