Samar M. Abd El-fattah, Sherif H. El-Gohary, Noha Hassan
{"title":"3D Model Construction and Analysis of Female Genital Organs Using Monte Carlo Simulation for Early Detection of Cervical Intraepithelial Neoplasia","authors":"Samar M. Abd El-fattah, Sherif H. El-Gohary, Noha Hassan","doi":"10.1109/CIBEC.2018.8641808","DOIUrl":null,"url":null,"abstract":"In this paper, Monte Carlo simulations of light propagation in realistic MRI based anatomical 3D models of the female genital organs, which are considered heterogeneous media, are presented. Three models representing a normal case with no cervical abnormalities and two abnormal cases representing early and late stage cervical cancer were used in the computations. The magnitude and the distribution of light intensity through the three models are computed for different sizes of the region of interest encompassing parts of structures surrounding the cervix, different penetration depths and different placements of the light source (trans-vaginal and transrectal). Results show that trans-rectal simulations are as useful as trans-vaginal simulations and that light absorption is highly dependent on the size and location of the cervical tumor with respect to the light source and the penetration depth with respect to the beginning of the cervix. The visualization of the light intensity maps in the cervix, surrounding organs and cervical tumors may provide insights into photodynamic therapy planning as well as into photoacoustic imaging of cervical cancer.","PeriodicalId":407809,"journal":{"name":"2018 9th Cairo International Biomedical Engineering Conference (CIBEC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 9th Cairo International Biomedical Engineering Conference (CIBEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBEC.2018.8641808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, Monte Carlo simulations of light propagation in realistic MRI based anatomical 3D models of the female genital organs, which are considered heterogeneous media, are presented. Three models representing a normal case with no cervical abnormalities and two abnormal cases representing early and late stage cervical cancer were used in the computations. The magnitude and the distribution of light intensity through the three models are computed for different sizes of the region of interest encompassing parts of structures surrounding the cervix, different penetration depths and different placements of the light source (trans-vaginal and transrectal). Results show that trans-rectal simulations are as useful as trans-vaginal simulations and that light absorption is highly dependent on the size and location of the cervical tumor with respect to the light source and the penetration depth with respect to the beginning of the cervix. The visualization of the light intensity maps in the cervix, surrounding organs and cervical tumors may provide insights into photodynamic therapy planning as well as into photoacoustic imaging of cervical cancer.