HOSO: Histogram of Surface Orientation for RGB-D Salient Object Detection

David Feng, N. Barnes, Shaodi You
{"title":"HOSO: Histogram of Surface Orientation for RGB-D Salient Object Detection","authors":"David Feng, N. Barnes, Shaodi You","doi":"10.1109/DICTA.2017.8227440","DOIUrl":null,"url":null,"abstract":"Salient object detection using RGB-D data is an emerging field in computer vision. Salient regions are often characterized by an unusual surface orientation profile with respect to the surroundings. To capture such profile, we introduce the histogram of surface orientation (HOSO) feature to measure surface orientation distribution contrast for RGB-D saliency. We propose a new unified model that integrates surface orientation distribution contrast with depth and color contrast across multiple scales. This model is implemented in a multi-stage saliency computation approach that performs contrast estimation using a kernel density estimator (KDE), estimates object positions from the low-level saliency map, and finally refines the estimated object positions with a graph cut based approach. Our method is evaluated on two RGB-D salient object detection databases, achieving superior performance to previous state-of-the-art methods.","PeriodicalId":194175,"journal":{"name":"2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"235 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2017.8227440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Salient object detection using RGB-D data is an emerging field in computer vision. Salient regions are often characterized by an unusual surface orientation profile with respect to the surroundings. To capture such profile, we introduce the histogram of surface orientation (HOSO) feature to measure surface orientation distribution contrast for RGB-D saliency. We propose a new unified model that integrates surface orientation distribution contrast with depth and color contrast across multiple scales. This model is implemented in a multi-stage saliency computation approach that performs contrast estimation using a kernel density estimator (KDE), estimates object positions from the low-level saliency map, and finally refines the estimated object positions with a graph cut based approach. Our method is evaluated on two RGB-D salient object detection databases, achieving superior performance to previous state-of-the-art methods.
面向RGB-D显著目标检测的表面方向直方图
利用RGB-D数据进行显著目标检测是计算机视觉中的一个新兴领域。突出区域通常具有相对于周围环境的不寻常的表面取向剖面。为了捕获这种轮廓,我们引入了表面取向直方图(HOSO)特征来测量RGB-D显着性的表面取向分布对比度。我们提出了一种新的统一模型,该模型将表面方向分布对比度与深度和颜色对比度集成在多个尺度上。该模型采用多阶段显著性计算方法实现,该方法使用核密度估计器(KDE)执行对比度估计,从低级显著性图中估计目标位置,最后使用基于图切的方法改进估计的目标位置。我们的方法在两个RGB-D显著目标检测数据库上进行了评估,取得了比以前最先进的方法更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信