Semiparametric Bayesian models for human brain mapping

L. Fahrmeir, C. Gössl
{"title":"Semiparametric Bayesian models for human brain mapping","authors":"L. Fahrmeir, C. Gössl","doi":"10.1191/1471082x02st040oa","DOIUrl":null,"url":null,"abstract":"Functional magnetic resonance imaging (fMRI) has led to enormous progress in human brain mapping. Adequate analysis of the massive spatiotemporal data sets generated by this imaging technique, combining parametric and non-parametric components, imposes challenging problems in statistical modelling. Complex hierarchical Bayesian models in combination with computer-intensive Markov chain Monte Carlo inference are promising tools. The purpose of this paper is twofold. First, it provides a review of general semiparametric Bayesian models for the analysis of fMRI data. Most approaches focus on important but separate temporal or spatial aspects of the overall problem, or they proceed by stepwise procedures. Therefore, as a second aim, we suggest a complete spatiotemporal model for analysing fMRI data within a unified semiparametric Bayesian framework. An application to data from a visual stimulation experiment illustrates our approach and demonstrates its computational feasibility.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"45 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082x02st040oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Functional magnetic resonance imaging (fMRI) has led to enormous progress in human brain mapping. Adequate analysis of the massive spatiotemporal data sets generated by this imaging technique, combining parametric and non-parametric components, imposes challenging problems in statistical modelling. Complex hierarchical Bayesian models in combination with computer-intensive Markov chain Monte Carlo inference are promising tools. The purpose of this paper is twofold. First, it provides a review of general semiparametric Bayesian models for the analysis of fMRI data. Most approaches focus on important but separate temporal or spatial aspects of the overall problem, or they proceed by stepwise procedures. Therefore, as a second aim, we suggest a complete spatiotemporal model for analysing fMRI data within a unified semiparametric Bayesian framework. An application to data from a visual stimulation experiment illustrates our approach and demonstrates its computational feasibility.
人脑映射的半参数贝叶斯模型
功能磁共振成像(fMRI)在人类大脑成像方面取得了巨大的进步。充分分析由这种成像技术产生的大量时空数据集,结合参数和非参数成分,在统计建模中提出了具有挑战性的问题。复杂层次贝叶斯模型结合计算机密集型马尔可夫链蒙特卡罗推理是很有前途的工具。本文的目的是双重的。首先,它提供了一般的半参数贝叶斯模型分析功能磁共振成像数据的回顾。大多数方法侧重于整体问题的重要但独立的时间或空间方面,或者采用逐步的程序。因此,作为第二个目标,我们提出了一个完整的时空模型,用于在统一的半参数贝叶斯框架内分析fMRI数据。一个视觉刺激实验数据的应用说明了我们的方法,并证明了它的计算可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信