Ramin Irani, Kamal Nasrollahi, Abhinav Dhall, T. Moeslund, Tom Gedeon
{"title":"Thermal super-pixels for bimodal stress recognition","authors":"Ramin Irani, Kamal Nasrollahi, Abhinav Dhall, T. Moeslund, Tom Gedeon","doi":"10.1109/IPTA.2016.7821002","DOIUrl":null,"url":null,"abstract":"Stress is a response to time pressure or negative environmental conditions. If its stimulus iterates or stays for a long time, it affects health conditions. Thus, stress recognition is an important issue. Traditional systems for this purpose are mostly contact-based, i.e., they require a sensor to be in touch with the body which is not always practical. Contact-free monitoring of the stress by a camera [1], [2] can be an alternative. These systems usually utilize only an RGB or a thermal camera to recognize stress. To the best of our knowledge, the only work on fusion of these two modalities for stress recognition is [3] which uses a feature level fusion of the two modalities. The features in [3] are extracted directly from pixel values. In this paper we show that extracting the features from super-pixels, followed by decision level fusion results in a system outperforming [3]. The experimental results on ANUstressDB database show that our system achieves 89% classification accuracy.","PeriodicalId":123429,"journal":{"name":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2016.7821002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Stress is a response to time pressure or negative environmental conditions. If its stimulus iterates or stays for a long time, it affects health conditions. Thus, stress recognition is an important issue. Traditional systems for this purpose are mostly contact-based, i.e., they require a sensor to be in touch with the body which is not always practical. Contact-free monitoring of the stress by a camera [1], [2] can be an alternative. These systems usually utilize only an RGB or a thermal camera to recognize stress. To the best of our knowledge, the only work on fusion of these two modalities for stress recognition is [3] which uses a feature level fusion of the two modalities. The features in [3] are extracted directly from pixel values. In this paper we show that extracting the features from super-pixels, followed by decision level fusion results in a system outperforming [3]. The experimental results on ANUstressDB database show that our system achieves 89% classification accuracy.