Active Spectral Clustering

Xiang Wang, I. Davidson
{"title":"Active Spectral Clustering","authors":"Xiang Wang, I. Davidson","doi":"10.1109/ICDM.2010.119","DOIUrl":null,"url":null,"abstract":"The technique of spectral clustering is widely used to segment a range of data from graphs to images. Our work marks a natural progression of spectral clustering from the original passive unsupervised formulation to our active semi-supervised formulation. We follow the widely used area of constrained clustering and allow supervision in the form of pair wise relations between two nodes: Must-Link and Cannot-Link. Unlike most previous constrained clustering work, our constraints are specified incrementally by querying an oracle (domain expert). Since in practice, each query comes with a cost, our goal is to maximally improve the result with as few queries as possible. The advantages of our approach include: 1) it is principled by querying the constraints which maximally reduce the expected error, 2) it can incorporate both hard and soft constraints which are prevalent in practice. We empirically show that our method significantly outperforms the baseline approach, namely constrained spectral clustering with randomly selected constraints, on UCI benchmark data sets.","PeriodicalId":294061,"journal":{"name":"2010 IEEE International Conference on Data Mining","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2010.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 89

Abstract

The technique of spectral clustering is widely used to segment a range of data from graphs to images. Our work marks a natural progression of spectral clustering from the original passive unsupervised formulation to our active semi-supervised formulation. We follow the widely used area of constrained clustering and allow supervision in the form of pair wise relations between two nodes: Must-Link and Cannot-Link. Unlike most previous constrained clustering work, our constraints are specified incrementally by querying an oracle (domain expert). Since in practice, each query comes with a cost, our goal is to maximally improve the result with as few queries as possible. The advantages of our approach include: 1) it is principled by querying the constraints which maximally reduce the expected error, 2) it can incorporate both hard and soft constraints which are prevalent in practice. We empirically show that our method significantly outperforms the baseline approach, namely constrained spectral clustering with randomly selected constraints, on UCI benchmark data sets.
主动光谱聚类
光谱聚类技术被广泛用于从图形到图像的一系列数据的分割。我们的工作标志着光谱聚类从原始的被动无监督公式到主动半监督公式的自然进展。我们遵循广泛使用的约束聚类领域,并允许以两个节点之间的成对关系形式进行监督:Must-Link和can - link。与以前的大多数约束集群工作不同,我们的约束是通过查询oracle(领域专家)来增量指定的。由于在实践中,每个查询都有成本,我们的目标是用尽可能少的查询来最大限度地改进结果。我们的方法的优点包括:1)通过查询最大限度地减少预期误差的约束,它是原则性的;2)它可以结合在实践中普遍存在的硬约束和软约束。我们的经验表明,我们的方法在UCI基准数据集上显著优于基线方法,即随机选择约束的约束谱聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信