Minimizing Energy Theft by Statistical Distance based Theft Detector in AMI

S. Singh, R. Bose, A. Joshi
{"title":"Minimizing Energy Theft by Statistical Distance based Theft Detector in AMI","authors":"S. Singh, R. Bose, A. Joshi","doi":"10.1109/NCC.2018.8600016","DOIUrl":null,"url":null,"abstract":"To minimize energy theft attacks in Advanced Metering Infrastructure (AMI), we propose statistical distance based theft detection method. In the proposed method, different statistical distance indices (Jensen-Shannon distance, Hellinger distance, and Cumulative Distribution Function based distance) are computed using historical measurement variations between adjacent time steps. When adversary launches energy theft attacks in AMI, distance indices increases. A threshold is set to detect malicious measurement samples. We tested the performance of the proposed method under different attack scenario using real smart meter data. Test results show that the proposed method minimizes energy theft attacks efficiently.","PeriodicalId":121544,"journal":{"name":"2018 Twenty Fourth National Conference on Communications (NCC)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Twenty Fourth National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2018.8600016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

To minimize energy theft attacks in Advanced Metering Infrastructure (AMI), we propose statistical distance based theft detection method. In the proposed method, different statistical distance indices (Jensen-Shannon distance, Hellinger distance, and Cumulative Distribution Function based distance) are computed using historical measurement variations between adjacent time steps. When adversary launches energy theft attacks in AMI, distance indices increases. A threshold is set to detect malicious measurement samples. We tested the performance of the proposed method under different attack scenario using real smart meter data. Test results show that the proposed method minimizes energy theft attacks efficiently.
AMI中基于统计距离的盗窃检测器最小化能源盗窃
为了最大限度地减少高级计量基础设施(AMI)中的能源盗窃攻击,我们提出了基于统计距离的盗窃检测方法。在该方法中,利用相邻时间步长之间的历史测量变化计算不同的统计距离指数(Jensen-Shannon距离、Hellinger距离和基于累积分布函数的距离)。当对手在AMI中发起能量盗窃攻击时,距离指数增加。通过设置阈值检测恶意测量样本。我们使用真实的智能电表数据测试了该方法在不同攻击场景下的性能。测试结果表明,该方法有效地减少了能量盗窃攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信