{"title":"Reactive-associative caches","authors":"Brannon Batson, T. N. Vijaykumar","doi":"10.1109/PACT.2001.953287","DOIUrl":null,"url":null,"abstract":"While set-associative caches typically incur fewer misses than direct-mapped caches, set-associative caches have slower hit tithes. We propose the reactive-associative cache (r-a cache), which provides flexible associativity by placing most blocks in direct-mapped positions and reactively displacing only conflicting blocks to set-associative positions. The r-a cache uses way-prediction (like the predictive associative cache, PSA) to access displaced blocks on the initial probe. Unlike PSA, however, the r-a cache employs a novel feedback mechanism to prevent unpredictable blocks from being displaced. Reactive displacement and feedback allow the r-a cache to use a novel PC-based way-prediction and achieve high accuracy; without impractical block swapping as in column associative and group associative, and without relying on timing-constrained XOR way prediction. A one-port, 4-way r-a cache achieves up to 9% speedup over a direct-mapped cache and performs within 2% of an idealized 2-way set-associative, 1-cycle cache. A 4-way r-a cache achieves up to 13% speedup over a PSA cache, with both r-a and PSA rising the PC scheme. CACTI estimates that for sizes larger than 8KB, a 4-way r-a cache is within 1% of direct-mapped hit times, and 24% faster than a 2-way set-associative cache.","PeriodicalId":276650,"journal":{"name":"Proceedings 2001 International Conference on Parallel Architectures and Compilation Techniques","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"94","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 International Conference on Parallel Architectures and Compilation Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACT.2001.953287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 94
Abstract
While set-associative caches typically incur fewer misses than direct-mapped caches, set-associative caches have slower hit tithes. We propose the reactive-associative cache (r-a cache), which provides flexible associativity by placing most blocks in direct-mapped positions and reactively displacing only conflicting blocks to set-associative positions. The r-a cache uses way-prediction (like the predictive associative cache, PSA) to access displaced blocks on the initial probe. Unlike PSA, however, the r-a cache employs a novel feedback mechanism to prevent unpredictable blocks from being displaced. Reactive displacement and feedback allow the r-a cache to use a novel PC-based way-prediction and achieve high accuracy; without impractical block swapping as in column associative and group associative, and without relying on timing-constrained XOR way prediction. A one-port, 4-way r-a cache achieves up to 9% speedup over a direct-mapped cache and performs within 2% of an idealized 2-way set-associative, 1-cycle cache. A 4-way r-a cache achieves up to 13% speedup over a PSA cache, with both r-a and PSA rising the PC scheme. CACTI estimates that for sizes larger than 8KB, a 4-way r-a cache is within 1% of direct-mapped hit times, and 24% faster than a 2-way set-associative cache.