Applying Multiclass Bandit algorithms to call-type classification

L. Ralaivola, Benoit Favre, Pierre Gotab, Frédéric Béchet, Géraldine Damnati
{"title":"Applying Multiclass Bandit algorithms to call-type classification","authors":"L. Ralaivola, Benoit Favre, Pierre Gotab, Frédéric Béchet, Géraldine Damnati","doi":"10.1109/ASRU.2011.6163970","DOIUrl":null,"url":null,"abstract":"We analyze the problem of call-type classification using data that is weakly labelled. The training data is not systematically annotated, but we consider we have a weak or lazy oracle able to answer the question “Is sample x of class q?” by a simple ‘yes’ or ‘no’ answer. This situation of learning might be encountered in many real-world problems where the cost of labelling data is very high. We prove that it is possible to learn linear classifiers in this setting, by estimating adequate expectations inspired by the Multiclass Bandit paradgim. We propose a learning strategy that builds on Kessler's construction to learn multiclass perceptrons. We test our learning procedure against two real-world datasets from spoken langage understanding and provide compelling results.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We analyze the problem of call-type classification using data that is weakly labelled. The training data is not systematically annotated, but we consider we have a weak or lazy oracle able to answer the question “Is sample x of class q?” by a simple ‘yes’ or ‘no’ answer. This situation of learning might be encountered in many real-world problems where the cost of labelling data is very high. We prove that it is possible to learn linear classifiers in this setting, by estimating adequate expectations inspired by the Multiclass Bandit paradgim. We propose a learning strategy that builds on Kessler's construction to learn multiclass perceptrons. We test our learning procedure against two real-world datasets from spoken langage understanding and provide compelling results.
应用Multiclass Bandit算法进行呼叫类型分类
我们使用弱标记数据分析了呼叫类型分类问题。训练数据没有系统地注释,但我们认为我们有一个弱的或懒惰的oracle,能够回答“样本x是类q的吗?”用一个简单的“是”或“不是”回答。这种学习情况可能会在许多现实世界的问题中遇到,其中标记数据的成本非常高。我们证明在这种情况下,通过估计由Multiclass Bandit范式启发的足够期望,可以学习线性分类器。我们提出了一种基于Kessler结构的学习策略来学习多类感知器。我们针对口语理解的两个真实世界数据集测试了我们的学习过程,并提供了令人信服的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信