The Optimum Pipeline Burial Depth Considering Slow Downslope Soil Movement and Seasonal Temperature Variation

Mohammad Katebi, Hongwei Liu, P. Maghoul, J. Blatz
{"title":"The Optimum Pipeline Burial Depth Considering Slow Downslope Soil Movement and Seasonal Temperature Variation","authors":"Mohammad Katebi, Hongwei Liu, P. Maghoul, J. Blatz","doi":"10.1115/IPC2018-78736","DOIUrl":null,"url":null,"abstract":"Thermal stress induced in a buried pipeline due to temperature variation is of great concern in Canada due to its extreme cold winter and warm summer. Thermal stress decreases by increasing the pipe’s burial depth while the interaction forces due to ground displacement increase by increasing the burial depth. As a result, the optimum burial depth of a pipeline is of great importance to pipeline companies to minimize interactions between the pipeline and soil in case of temperature variations and ground displacements. Thermal stress is estimated from a heat transfer analysis considering the phase change in the soil using COMSOL. Soil-pipeline interaction based on 1984 ASCE Guidelines [1] is used for considering the effects of ground movements. The combined stress on the pipeline is estimated as a function of burial depth and is presented in a curve for design purposes. Numerical analysis by ABAQUS shows the adequacy of the presented curve.","PeriodicalId":164582,"journal":{"name":"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IPC2018-78736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Thermal stress induced in a buried pipeline due to temperature variation is of great concern in Canada due to its extreme cold winter and warm summer. Thermal stress decreases by increasing the pipe’s burial depth while the interaction forces due to ground displacement increase by increasing the burial depth. As a result, the optimum burial depth of a pipeline is of great importance to pipeline companies to minimize interactions between the pipeline and soil in case of temperature variations and ground displacements. Thermal stress is estimated from a heat transfer analysis considering the phase change in the soil using COMSOL. Soil-pipeline interaction based on 1984 ASCE Guidelines [1] is used for considering the effects of ground movements. The combined stress on the pipeline is estimated as a function of burial depth and is presented in a curve for design purposes. Numerical analysis by ABAQUS shows the adequacy of the presented curve.
考虑下坡土壤缓慢移动和季节温度变化的管道最佳埋深
加拿大冬季极冷,夏季极暖,埋地管道因温度变化而产生的热应力备受关注。热应力随埋深的增加而减小,而地面位移相互作用力随埋深的增加而增大。因此,管道的最佳埋深对管道公司来说非常重要,以最大限度地减少管道与土壤在温度变化和地面位移情况下的相互作用。热应力是用COMSOL软件从考虑土壤相变的传热分析中估计的。基于1984年ASCE指南[1]的土壤-管道相互作用用于考虑地面运动的影响。管道上的综合应力估计为埋深的函数,并以曲线形式表示,以便设计。利用ABAQUS进行的数值分析表明,所提出的曲线是适当的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信