Impact of Including Electronics Design on Design of Intelligent Structures: Applications to Multifunctional Structures for Attitude Control (MSAC)

Vedant, James T. Allison
{"title":"Impact of Including Electronics Design on Design of Intelligent Structures: Applications to Multifunctional Structures for Attitude Control (MSAC)","authors":"Vedant, James T. Allison","doi":"10.1115/smasis2020-2331","DOIUrl":null,"url":null,"abstract":"\n Multifunctional Structures for Attitude Control (MSAC) is a new spacecraft attitude control system that utilizes deployable panels as multifunctional intelligent structures to provide both fine pointing and large slew attitude control. Previous studies introduced MSAC design and operation concepts, simulation-based design studies, and Hardware-in-the-Loop (HIL) validation of a simplified prototype. In this article, we expand the scope of design studies to include individual compliant piezo-electric actuators and associated power electronics. This advance is a step toward high-fidelity MSAC system operation, and reveals new design insights for further performance enhancement. Actuators are designed using pseudo rigid body dynamic models (PRBDMs), and are validated for steady-state and step responses against Finite Element Analysis. The drive electronics model consists of a few distinct topologies that will be used to evaluate system performance for given mechanical and control system designs. Subsequently, a high-fidelity multiphysics multibody MSAC system model, based on the validated compliant actuators and drive electronics, is developed to support implementation of MSAC Control Co-design optimization studies. This model will be used to demonstrate the impact of including the power electronics design in the Optimal Control Co-Design domain. The different control trajectories are compared for slew rates and the vibrational jitter introduced to the satellite. The results from this work will be used to realize closed-loop control trajectories that have minimal jitter introduction while providing high slew rates.","PeriodicalId":118010,"journal":{"name":"ASME 2020 Conference on Smart Materials, Adaptive Structures and Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2020 Conference on Smart Materials, Adaptive Structures and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/smasis2020-2331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Multifunctional Structures for Attitude Control (MSAC) is a new spacecraft attitude control system that utilizes deployable panels as multifunctional intelligent structures to provide both fine pointing and large slew attitude control. Previous studies introduced MSAC design and operation concepts, simulation-based design studies, and Hardware-in-the-Loop (HIL) validation of a simplified prototype. In this article, we expand the scope of design studies to include individual compliant piezo-electric actuators and associated power electronics. This advance is a step toward high-fidelity MSAC system operation, and reveals new design insights for further performance enhancement. Actuators are designed using pseudo rigid body dynamic models (PRBDMs), and are validated for steady-state and step responses against Finite Element Analysis. The drive electronics model consists of a few distinct topologies that will be used to evaluate system performance for given mechanical and control system designs. Subsequently, a high-fidelity multiphysics multibody MSAC system model, based on the validated compliant actuators and drive electronics, is developed to support implementation of MSAC Control Co-design optimization studies. This model will be used to demonstrate the impact of including the power electronics design in the Optimal Control Co-Design domain. The different control trajectories are compared for slew rates and the vibrational jitter introduced to the satellite. The results from this work will be used to realize closed-loop control trajectories that have minimal jitter introduction while providing high slew rates.
电子设计对智能结构设计的影响:在姿态控制多功能结构中的应用
多功能姿态控制结构(MSAC)是一种新型的航天器姿态控制系统,它利用可展开面板作为多功能智能结构,提供精细指向和大回转姿态控制。先前的研究介绍了MSAC的设计和操作概念,基于仿真的设计研究,以及简化原型的硬件在环(HIL)验证。在这篇文章中,我们扩大了设计研究的范围,包括个人兼容的压电致动器和相关的电力电子设备。这一进展是迈向高保真MSAC系统操作的一步,并为进一步提高性能揭示了新的设计见解。采用伪刚体动力学模型(prbdm)设计了执行器,并通过有限元分析对其稳态和阶跃响应进行了验证。驱动电子模型由几个不同的拓扑组成,将用于评估给定机械和控制系统设计的系统性能。随后,基于验证的柔性致动器和驱动电子器件,建立了高保真的多物理场多体MSAC系统模型,以支持MSAC控制协同设计优化研究的实施。该模型将用于演示将电力电子设计纳入最优控制协同设计领域的影响。比较了不同的控制轨迹对摆率和引入卫星的振动抖动的影响。这项工作的结果将用于实现具有最小抖动引入的闭环控制轨迹,同时提供高转换率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信