Yutao Jiao, Ping Wang, D. Niyato, Jun Zhao, B. Lin, Dong In Kim
{"title":"Task Allocation and Mobile Base Station Deployment in Wireless Powered Spatial Crowdsourcing","authors":"Yutao Jiao, Ping Wang, D. Niyato, Jun Zhao, B. Lin, Dong In Kim","doi":"10.1109/SmartGridComm.2019.8909703","DOIUrl":null,"url":null,"abstract":"Wireless power transfer (WPT) is a promising technology to prolong the lifetime of sensor and communication devices, i.e., workers, in completing crowdsourcing tasks by providing continuous and cost-effective energy supplies. In this paper, we propose a wireless powered spatial crowdsourcing (SC) framework which consists of two mutual dependent phases: task allocation phase and data crowdsourcing phase. In the task allocation phase, we propose a Stackelberg game based mechanism for the SC platform to efficiently allocate spatial tasks and wireless charging power to each worker. In the data crowdsourcing phase, the workers may have an incentive to misreport its real working location to improve its own utility, which manipulates the SC platform. To address this issue, we present a strategyproof deployment mechanism for the SC platform to deploy its mobile base station. We apply the Moulin’s generalized median mechanism and analyze the worst-case performance in maximizing the SC platform’s utility. Finally, numerical experiments reveal the effectiveness of the proposed framework in allocating tasks and charging power to workers while avoiding the dishonest worker’s manipulation.","PeriodicalId":377150,"journal":{"name":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2019.8909703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Wireless power transfer (WPT) is a promising technology to prolong the lifetime of sensor and communication devices, i.e., workers, in completing crowdsourcing tasks by providing continuous and cost-effective energy supplies. In this paper, we propose a wireless powered spatial crowdsourcing (SC) framework which consists of two mutual dependent phases: task allocation phase and data crowdsourcing phase. In the task allocation phase, we propose a Stackelberg game based mechanism for the SC platform to efficiently allocate spatial tasks and wireless charging power to each worker. In the data crowdsourcing phase, the workers may have an incentive to misreport its real working location to improve its own utility, which manipulates the SC platform. To address this issue, we present a strategyproof deployment mechanism for the SC platform to deploy its mobile base station. We apply the Moulin’s generalized median mechanism and analyze the worst-case performance in maximizing the SC platform’s utility. Finally, numerical experiments reveal the effectiveness of the proposed framework in allocating tasks and charging power to workers while avoiding the dishonest worker’s manipulation.