Multiclass parametric decision-making processor for classification of patterns with missing descriptors

J. Kittler
{"title":"Multiclass parametric decision-making processor for classification of patterns with missing descriptors","authors":"J. Kittler","doi":"10.1049/IJ-CDT.1978.0017","DOIUrl":null,"url":null,"abstract":"In the paper, the problem of classifying pattern vectors with missing descriptors using the parametric minimum-error decision rule for normally distributed classes is considered. A computationally efficient method for determining the optimal parameters of the classifier for operating in any subspace of the pattern space is proposed. In general, for any number of missing descriptors satisfying q < n/2, where n is the dimensionality of the complete pattern space, the method affords considerable saving in both computer time and storage requirements. Consequently, the cost of implementation of the classifier is substantially reduced.","PeriodicalId":344610,"journal":{"name":"Iee Journal on Computers and Digital Techniques","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1978-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iee Journal on Computers and Digital Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/IJ-CDT.1978.0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the paper, the problem of classifying pattern vectors with missing descriptors using the parametric minimum-error decision rule for normally distributed classes is considered. A computationally efficient method for determining the optimal parameters of the classifier for operating in any subspace of the pattern space is proposed. In general, for any number of missing descriptors satisfying q < n/2, where n is the dimensionality of the complete pattern space, the method affords considerable saving in both computer time and storage requirements. Consequently, the cost of implementation of the classifier is substantially reduced.
缺失描述符模式分类的多类参数决策处理器
本文研究了正态分布类的参数最小误差决策规则对描述符缺失的模式向量进行分类的问题。提出了一种在模式空间的任意子空间中确定分类器最优参数的高效计算方法。一般来说,对于满足q < n/2的任意数量的缺失描述符,其中n是完整模式空间的维数,该方法在计算机时间和存储需求方面都可以节省大量时间。因此,分类器的实现成本大大降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信