The Parameterized Complexity of Fixing Number and Vertex Individualization in Graphs

V. Arvind, Frank Fuhlbrück, J. Köbler, Sebastian Kuhnert, Gaurav Rattan
{"title":"The Parameterized Complexity of Fixing Number and Vertex Individualization in Graphs","authors":"V. Arvind, Frank Fuhlbrück, J. Köbler, Sebastian Kuhnert, Gaurav Rattan","doi":"10.1145/3558077","DOIUrl":null,"url":null,"abstract":"In this paper we study the algorithmic complexity of the following problems: (1) Given a vertex-colored graph X = (V,E,c), compute a minimum cardinality set of vertices S⊆ V such that no nontrivial automorphism of X fixes all vertices in S. A closely related problem is computing a minimum base S for a permutation group G ≤ Sym(n) given by generators, i.e., a minimum cardinality subset S ⊆ [n] such that no nontrivial permutation in G fixes all elements of S. Our focus is mainly on the parameterized complexity of these problems. We show that when k=|S| is treated as parameter, then both problems are MINI[1]-hard. For the dual problems, where k = n – |S| is the parameter, we give FPT algorithms.(2) A notion related to fixing is individualization, which is a useful technique combined with the Weisfeiler-Leman procedure in algorithms for Graph Isomorphism. We explore the complexity of individualization: the problem of computing the minimum number of vertices we need to individualize in a given graph such that color refinement results in a graph with useful structural properties in the context of Graph Isomorphism and the Weisfeiler-Leman procedure.","PeriodicalId":198744,"journal":{"name":"ACM Transactions on Computation Theory (TOCT)","volume":"606 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computation Theory (TOCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3558077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we study the algorithmic complexity of the following problems: (1) Given a vertex-colored graph X = (V,E,c), compute a minimum cardinality set of vertices S⊆ V such that no nontrivial automorphism of X fixes all vertices in S. A closely related problem is computing a minimum base S for a permutation group G ≤ Sym(n) given by generators, i.e., a minimum cardinality subset S ⊆ [n] such that no nontrivial permutation in G fixes all elements of S. Our focus is mainly on the parameterized complexity of these problems. We show that when k=|S| is treated as parameter, then both problems are MINI[1]-hard. For the dual problems, where k = n – |S| is the parameter, we give FPT algorithms.(2) A notion related to fixing is individualization, which is a useful technique combined with the Weisfeiler-Leman procedure in algorithms for Graph Isomorphism. We explore the complexity of individualization: the problem of computing the minimum number of vertices we need to individualize in a given graph such that color refinement results in a graph with useful structural properties in the context of Graph Isomorphism and the Weisfeiler-Leman procedure.
图中定数与顶点个性化的参数化复杂度
本文研究了以下问题的算法复杂度:(1)鉴于vertex-colored图X = (V, E、c),计算出最低的基数的顶点集S⊆V这样没有重要的自同构(X)修复所有顶点在美国一个密切相关的问题是计算最小基年代置换群G≤信谊(n)由发电机,即最低基数子集S⊆[n]这样,没有重要的排列在G修复所有元素的美国主要是我们关注的是参数化的这些问题的复杂性。我们证明了当k=|S|作为参数时,两个问题都是MINI[1]难的。(2)与固定相关的一个概念是个体化,它是图同构算法中与Weisfeiler-Leman过程相结合的一种有用的技术。我们探索个性化的复杂性:在给定的图中,计算我们需要个性化的最小顶点数的问题,以便在图同构和Weisfeiler-Leman过程的背景下,颜色细化产生具有有用结构属性的图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信