A decision-making architecture for observation and patrolling problems using machine learning

Jamy Chahal, A. E. Seghrouchni, A. Belbachir
{"title":"A decision-making architecture for observation and patrolling problems using machine learning","authors":"Jamy Chahal, A. E. Seghrouchni, A. Belbachir","doi":"10.1109/iiai-aai53430.2021.00074","DOIUrl":null,"url":null,"abstract":"Observation and patrolling methods assure the coverage of the entire environment while dealing with moving targets. The efficiency of these methods rely on a wide range of parameters, such as the number of targets, the communication range of the patrolling agent or the map's shape. Thus, in this paper we propose a decision-making tool to optimize a set of parameters among the settings defining the observation and patrolling problem. The obtained optimal configuration has to ensure the expected efficiencies by the user, through the use of evaluation criteria. This tool is based on a simulation-assisted machine learning architecture, which performs a faster prediction response than running the simulation directly to obtain evaluation result. We evaluate the efficiency of the decision-making tool through several scenario, implying one or two parameters to be optimized.","PeriodicalId":414070,"journal":{"name":"2021 10th International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 10th International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iiai-aai53430.2021.00074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Observation and patrolling methods assure the coverage of the entire environment while dealing with moving targets. The efficiency of these methods rely on a wide range of parameters, such as the number of targets, the communication range of the patrolling agent or the map's shape. Thus, in this paper we propose a decision-making tool to optimize a set of parameters among the settings defining the observation and patrolling problem. The obtained optimal configuration has to ensure the expected efficiencies by the user, through the use of evaluation criteria. This tool is based on a simulation-assisted machine learning architecture, which performs a faster prediction response than running the simulation directly to obtain evaluation result. We evaluate the efficiency of the decision-making tool through several scenario, implying one or two parameters to be optimized.
使用机器学习的观察和巡逻问题的决策架构
观察和巡逻方法在处理运动目标时保证了对整个环境的覆盖。这些方法的效率依赖于广泛的参数,如目标的数量、巡逻代理的通信范围或地图的形状。因此,在本文中,我们提出了一个决策工具来优化一组参数的设置定义的观察和巡逻问题。通过使用评估标准,获得的最优配置必须确保用户期望的效率。该工具基于模拟辅助机器学习架构,比直接运行模拟获得评估结果执行更快的预测响应。我们通过几个场景来评估决策工具的效率,暗示一个或两个参数需要优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信