Sequence-based bias analysis of spontaneous facial expression databases

Zhaoyu Wang, Jun Wang, Shangfei Wang, Q. Ji
{"title":"Sequence-based bias analysis of spontaneous facial expression databases","authors":"Zhaoyu Wang, Jun Wang, Shangfei Wang, Q. Ji","doi":"10.1109/ICMEW.2014.6890646","DOIUrl":null,"url":null,"abstract":"In this paper, cross-corpora evaluations are used to analyze the bias of spontaneous facial expression databases. Local binary pattern and Gabor feature are extracted from difference-image sequences. A Hidden Markov Model is used as the classifier to discriminate arousal (i.e. high versus low) and valence (i.e. positive versus negative) respectively. Four datasets are adopted, including: UT-Dallas, USTC-NVIE, DEAP and MAHNOB. Experimental results indicate that there exists bias among different spontaneous facial expression databases. The bias may reduce the generalization performance of algorithm trained on these databases. The emotion induction stimulus, the variety of subjects, and the segmentation may have caused such a bias.","PeriodicalId":178700,"journal":{"name":"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW.2014.6890646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, cross-corpora evaluations are used to analyze the bias of spontaneous facial expression databases. Local binary pattern and Gabor feature are extracted from difference-image sequences. A Hidden Markov Model is used as the classifier to discriminate arousal (i.e. high versus low) and valence (i.e. positive versus negative) respectively. Four datasets are adopted, including: UT-Dallas, USTC-NVIE, DEAP and MAHNOB. Experimental results indicate that there exists bias among different spontaneous facial expression databases. The bias may reduce the generalization performance of algorithm trained on these databases. The emotion induction stimulus, the variety of subjects, and the segmentation may have caused such a bias.
基于序列的自发面部表情数据库偏差分析
本文采用跨语料库评价方法对面部表情数据库的偏差进行分析。从差分图像序列中提取局部二值模式和Gabor特征。使用隐马尔可夫模型作为分类器分别区分唤醒(即高与低)和效价(即正与负)。采用四个数据集,包括:UT-Dallas, USTC-NVIE, DEAP和MAHNOB。实验结果表明,不同的面部表情数据库之间存在一定的偏差。这种偏差会降低在这些数据库上训练的算法的泛化性能。情绪诱导刺激、被试的多样性和分割都可能造成这种偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信