Open-set semi-supervised audio-visual speaker recognition using co-training LDA and Sparse Representation Classifiers

Xuran Zhao, N. Evans, J. Dugelay
{"title":"Open-set semi-supervised audio-visual speaker recognition using co-training LDA and Sparse Representation Classifiers","authors":"Xuran Zhao, N. Evans, J. Dugelay","doi":"10.1109/ICASSP.2013.6638208","DOIUrl":null,"url":null,"abstract":"Semi-supervised learning is attracting growing interest within the biometrics community. Almost all prior work focuses on closed-set scenarios, in which samples labelled automatically are assumed to belong to an enrolled class. This is often not the case in realistic applications and thus open-set alternatives are needed. This paper proposes a new approach to open-set, semi-supervised learning based on co-training, Linear Discriminant Analysis (LDA) subspaces and Sparse Representation Classifiers (SRCs). Experiments on the standard MOBIO dataset show how the new approach can utilize automatically labelled data to augment a smaller, manually labelled dataset and thus improve the performance of an open-set audio-visual person recognition system.","PeriodicalId":183968,"journal":{"name":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"444 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2013.6638208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Semi-supervised learning is attracting growing interest within the biometrics community. Almost all prior work focuses on closed-set scenarios, in which samples labelled automatically are assumed to belong to an enrolled class. This is often not the case in realistic applications and thus open-set alternatives are needed. This paper proposes a new approach to open-set, semi-supervised learning based on co-training, Linear Discriminant Analysis (LDA) subspaces and Sparse Representation Classifiers (SRCs). Experiments on the standard MOBIO dataset show how the new approach can utilize automatically labelled data to augment a smaller, manually labelled dataset and thus improve the performance of an open-set audio-visual person recognition system.
基于联合训练LDA和稀疏表示分类器的开集半监督视听说话人识别
半监督学习在生物识别界引起了越来越多的兴趣。几乎所有先前的工作都集中在闭集场景上,其中自动标记的样本被假设属于已登记的类别。这在实际应用中通常不是这种情况,因此需要开集替代方案。本文提出了一种基于协同训练、线性判别分析(LDA)子空间和稀疏表示分类器(src)的开集半监督学习新方法。在标准MOBIO数据集上的实验表明,新方法可以利用自动标记的数据来增强较小的手动标记数据集,从而提高开放集视听人物识别系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信