А. Zhumagaliyeva, V. Gargiulo, F. Raganat, Y. Doszhanov, M. Alfè
{"title":"Carbon based nanocomposite material for CO2 capture technology","authors":"А. Zhumagaliyeva, V. Gargiulo, F. Raganat, Y. Doszhanov, M. Alfè","doi":"10.18321/cpc283","DOIUrl":null,"url":null,"abstract":"Carbon capture and sequestration contains a group of technologies keeping thedifferentiation of CO2 from large industrial and energy related sources, transport toa storage location and long-term isolation from the atmosphere. Previous studiesof CO2 adsorption on low-cost iron metal oxide surfaces strongly encourage thepossible use of metal oxide as sorbents, but the tendency of magnetite particles toagglomerate causes a lowering of CO2 sorption capacity. This work investigates theadsorption behavior of CO2 on composite materials prepared coating a low-costcarbonized rice husk (cRH), commercial carbon black (CB) with magnetite fineparticles. The CO2 capture capacity of composites and based on rice husk materialswas evaluated the basis of the breakthrough times measured at atmosphericpressure and room temperature in a lab-scale fixed bed micro-reactor. To thisaim the reactor has been firstly operated for CO2 adsorption data with obtainedsamples.","PeriodicalId":414729,"journal":{"name":"ГОРЕНИЕ И ПЛАЗМОХИМИЯ","volume":"1790 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ГОРЕНИЕ И ПЛАЗМОХИМИЯ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18321/cpc283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon capture and sequestration contains a group of technologies keeping thedifferentiation of CO2 from large industrial and energy related sources, transport toa storage location and long-term isolation from the atmosphere. Previous studiesof CO2 adsorption on low-cost iron metal oxide surfaces strongly encourage thepossible use of metal oxide as sorbents, but the tendency of magnetite particles toagglomerate causes a lowering of CO2 sorption capacity. This work investigates theadsorption behavior of CO2 on composite materials prepared coating a low-costcarbonized rice husk (cRH), commercial carbon black (CB) with magnetite fineparticles. The CO2 capture capacity of composites and based on rice husk materialswas evaluated the basis of the breakthrough times measured at atmosphericpressure and room temperature in a lab-scale fixed bed micro-reactor. To thisaim the reactor has been firstly operated for CO2 adsorption data with obtainedsamples.