Exploration of Network Security Information Hid in Web Pages Based on Immunology

Caiming Liu, Tao Li, Hui Zhao, Lingxi Peng, Jinquan Zeng, Yan Zhang
{"title":"Exploration of Network Security Information Hid in Web Pages Based on Immunology","authors":"Caiming Liu, Tao Li, Hui Zhao, Lingxi Peng, Jinquan Zeng, Yan Zhang","doi":"10.1109/FSKD.2007.280","DOIUrl":null,"url":null,"abstract":"To discover information endangering network security, an exploration method of network security information based on immunology is proposed. Antibody and antigen in biological immune system are used to denote keywords hid in HTML pages. Proposed method generates new antibodies to recognize unknown keywords through immune rules. By mechanisms of self-learning and evolution, antibody families form to represent distribution of different network security information. All antibodies in the same family are totalized to evaluate the information distribution degree. Simulation experiments show that the proposed method is able to find useful information threatening network and improve the intelligent degree of evaluating security of Web information.","PeriodicalId":201883,"journal":{"name":"Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2007.280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To discover information endangering network security, an exploration method of network security information based on immunology is proposed. Antibody and antigen in biological immune system are used to denote keywords hid in HTML pages. Proposed method generates new antibodies to recognize unknown keywords through immune rules. By mechanisms of self-learning and evolution, antibody families form to represent distribution of different network security information. All antibodies in the same family are totalized to evaluate the information distribution degree. Simulation experiments show that the proposed method is able to find useful information threatening network and improve the intelligent degree of evaluating security of Web information.
基于免疫学的隐藏在网页中的网络安全信息探索
为了发现危害网络安全的信息,提出了一种基于免疫学的网络安全信息探测方法。用生物免疫系统中的抗体和抗原来表示隐藏在HTML页面中的关键词。该方法通过免疫规则生成新的抗体来识别未知关键词。通过自我学习和进化机制,形成抗体家族,代表不同网络安全信息的分布。对同一家族的所有抗体进行汇总,评价信息分布程度。仿真实验表明,该方法能够发现威胁网络的有用信息,提高了Web信息安全评估的智能化程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信