Joint Beam Management and Relay Selection Using Deep Reinforcement Learning for MmWave UAV Relay Networks

Dohyun Kim, Miguel R. Castellanos, R. Heath
{"title":"Joint Beam Management and Relay Selection Using Deep Reinforcement Learning for MmWave UAV Relay Networks","authors":"Dohyun Kim, Miguel R. Castellanos, R. Heath","doi":"10.1109/MILCOM55135.2022.10017754","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicle (UAV) relays are useful in tactical millimeter wave (mmWave) networks to overcome blockages and improve link resilience. Getting the most benefits from relays, though, requires efficient strategies for relay selection and for beam management. In this paper, we use deep reinforcement learning (DRL) to jointly select unblocked UAV relays and to perform beam management. The proposed DRL-based algorithm uses rate feedback from the receiver to learn a policy that adapts to the dynamic channel conditions. We show with numerical evaluation that the proposed method outperforms baselines without prior channel knowledge. Moreover, the DRL-based algorithm can maintain high spectral efficiency even under frequent blockages.","PeriodicalId":239804,"journal":{"name":"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM55135.2022.10017754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Unmanned aerial vehicle (UAV) relays are useful in tactical millimeter wave (mmWave) networks to overcome blockages and improve link resilience. Getting the most benefits from relays, though, requires efficient strategies for relay selection and for beam management. In this paper, we use deep reinforcement learning (DRL) to jointly select unblocked UAV relays and to perform beam management. The proposed DRL-based algorithm uses rate feedback from the receiver to learn a policy that adapts to the dynamic channel conditions. We show with numerical evaluation that the proposed method outperforms baselines without prior channel knowledge. Moreover, the DRL-based algorithm can maintain high spectral efficiency even under frequent blockages.
基于深度强化学习的毫米波无人机中继网络联合波束管理和中继选择
无人机(UAV)中继在战术毫米波(mmWave)网络中非常有用,可以克服阻塞并提高链路弹性。然而,要从中继中获得最大的好处,需要有效的中继选择和波束管理策略。在本文中,我们使用深度强化学习(DRL)来联合选择无阻塞的无人机中继并进行波束管理。提出的基于drl的算法利用接收端的速率反馈来学习适应动态信道条件的策略。我们通过数值评估表明,所提出的方法优于没有先验信道知识的基线。此外,基于drl的算法即使在频繁阻塞的情况下也能保持较高的频谱效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信