Imputing trust network information in NMF-based collaborative filtering

Fatemah H. Alghamedy, Xiwei Wang, Jun Zhang
{"title":"Imputing trust network information in NMF-based collaborative filtering","authors":"Fatemah H. Alghamedy, Xiwei Wang, Jun Zhang","doi":"10.1145/3190645.3190672","DOIUrl":null,"url":null,"abstract":"We propose an NMF (Nonnegative Matrix Factorization)-based approach in collaborative filtering based recommendation systems to handle the cold-start users issue, especially for the New-Users who did not rate any items. The proposed approach utilizes the trust network information to impute missing ratings before NMF is applied. We do two cases of imputation: (1) when all users are imputed, and (2) when only New-Users are imputed. To study the impact of the imputation, we divide users into three groups and calculate their recommendation errors. Experiments on four different datasets are conducted to examine the proposed approach. The results show that our approach can handle the New-Users issue and reduce the recommendation errors for the whole dataset especially in the second imputation case.","PeriodicalId":403177,"journal":{"name":"Proceedings of the ACMSE 2018 Conference","volume":"257 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACMSE 2018 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3190645.3190672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We propose an NMF (Nonnegative Matrix Factorization)-based approach in collaborative filtering based recommendation systems to handle the cold-start users issue, especially for the New-Users who did not rate any items. The proposed approach utilizes the trust network information to impute missing ratings before NMF is applied. We do two cases of imputation: (1) when all users are imputed, and (2) when only New-Users are imputed. To study the impact of the imputation, we divide users into three groups and calculate their recommendation errors. Experiments on four different datasets are conducted to examine the proposed approach. The results show that our approach can handle the New-Users issue and reduce the recommendation errors for the whole dataset especially in the second imputation case.
基于nmf的协同过滤中信任网络信息的输入
在基于协同过滤的推荐系统中,我们提出了一种基于NMF(非负矩阵分解)的方法来处理冷启动用户的问题,特别是对于那些没有对任何项目进行评分的新用户。该方法利用信任网络信息在应用NMF之前估算缺失评级。我们做了两种情况的推算:(1)当所有的用户被推算,(2)当只有新用户被推算。为了研究imputation的影响,我们将用户分为三组,并计算他们的推荐误差。在四个不同的数据集上进行了实验来检验所提出的方法。结果表明,该方法可以有效地处理新用户问题,降低了整个数据集的推荐误差,特别是在第二次imputation情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信