Thematic labeling of Twitter accounts using DBpedia properties

Gerasimos Razis, Ioannis Anagnostopoulos, Petr Šaloun
{"title":"Thematic labeling of Twitter accounts using DBpedia properties","authors":"Gerasimos Razis, Ioannis Anagnostopoulos, Petr Šaloun","doi":"10.1109/SMAP.2016.7753393","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an iterative algorithm towards the automatic labeling of Twitter accounts in respect to thematic categories derived from DBpedia properties. We describe the rationale behind the selection of these thematic categories, and discuss their evaluation assessment. Finally, we propose and analyze two generic and adaptable methodologies for discovering the necessary linked data resources for further enhancing the thematic description of Twitter accounts.","PeriodicalId":247696,"journal":{"name":"2016 11th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 11th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMAP.2016.7753393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we propose an iterative algorithm towards the automatic labeling of Twitter accounts in respect to thematic categories derived from DBpedia properties. We describe the rationale behind the selection of these thematic categories, and discuss their evaluation assessment. Finally, we propose and analyze two generic and adaptable methodologies for discovering the necessary linked data resources for further enhancing the thematic description of Twitter accounts.
使用DBpedia属性对Twitter帐户进行主题标记
在本文中,我们提出了一种迭代算法,用于根据DBpedia属性派生的主题类别自动标记Twitter帐户。我们描述了选择这些主题类别背后的基本原理,并讨论了它们的评估评估。最后,我们提出并分析了两种通用和适应性强的方法,用于发现必要的关联数据资源,以进一步增强Twitter帐户的主题描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信