ASR - VLSP 2021: An Efficient Transformer-based Approach for Vietnamese ASR Task

Toan Truong Tien
{"title":"ASR - VLSP 2021: An Efficient Transformer-based Approach for Vietnamese ASR Task","authors":"Toan Truong Tien","doi":"10.25073/2588-1086/vnucsce.325","DOIUrl":null,"url":null,"abstract":"Various techniques have been applied to enhance automatic speech recognition during the last few years. Reaching auspicious performance in natural language processing makes Transformer architecture becoming the de facto standard in numerous domains. This paper first presents our effort to collect a 3000-hour Vietnamese speech corpus. After that, we introduce the system used for VLSP 2021 ASR task 2, which is based on the Transformer. Our simple method achieves a favorable syllable error rate of 6.72% and gets second place on the private test. Experimental results indicate that the proposed approach dominates traditional methods with lower syllable error rates on general-domain evaluation sets. Finally, we show that applying Vietnamese word segmentation on the label does not improve the efficiency of the ASR system.","PeriodicalId":416488,"journal":{"name":"VNU Journal of Science: Computer Science and Communication Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VNU Journal of Science: Computer Science and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25073/2588-1086/vnucsce.325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Various techniques have been applied to enhance automatic speech recognition during the last few years. Reaching auspicious performance in natural language processing makes Transformer architecture becoming the de facto standard in numerous domains. This paper first presents our effort to collect a 3000-hour Vietnamese speech corpus. After that, we introduce the system used for VLSP 2021 ASR task 2, which is based on the Transformer. Our simple method achieves a favorable syllable error rate of 6.72% and gets second place on the private test. Experimental results indicate that the proposed approach dominates traditional methods with lower syllable error rates on general-domain evaluation sets. Finally, we show that applying Vietnamese word segmentation on the label does not improve the efficiency of the ASR system.
ASR - VLSP 2021:越南ASR任务的高效变压器方法
在过去的几年中,各种技术被应用于增强自动语音识别。在自然语言处理方面达到良好的性能使得Transformer架构成为许多领域的事实标准。本文首先介绍了我们收集3000小时越南语语音语料库的努力。然后,我们介绍了基于Transformer的VLSP 2021 ASR任务2所使用的系统。我们的简单方法达到了6.72%的音节错误率,在私测中获得了第二名。实验结果表明,该方法在通用领域评价集上的音节错误率较低,优于传统方法。最后,我们证明了在标签上应用越南语分词并不能提高ASR系统的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信