Improving Frequency Estimation under Local Differential Privacy

Milan Lopuhaä-Zwakenberg, Zitao Li, B. Škorić, Ninghui Li
{"title":"Improving Frequency Estimation under Local Differential Privacy","authors":"Milan Lopuhaä-Zwakenberg, Zitao Li, B. Škorić, Ninghui Li","doi":"10.1145/3411497.3420215","DOIUrl":null,"url":null,"abstract":"Local Differential Privacy protocols are stochastic protocols used in data aggregation when individual users do not trust the data aggregator with their private data. In such protocols there is a fundamental tradeoff between user privacy and aggregator utility. In the setting of frequency estimation, established bounds on this tradeoff are either nonquantitative, or far from what is known to be attainable. In this paper, we use information-theoretical methods to significantly improve established bounds. We also show that the new bounds are attainable for binary inputs. Furthermore, our methods lead to improved frequency estimators, which we experimentally show to outperform state-of-the-art methods.","PeriodicalId":329371,"journal":{"name":"Proceedings of the 19th Workshop on Privacy in the Electronic Society","volume":"18 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th Workshop on Privacy in the Electronic Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3411497.3420215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Local Differential Privacy protocols are stochastic protocols used in data aggregation when individual users do not trust the data aggregator with their private data. In such protocols there is a fundamental tradeoff between user privacy and aggregator utility. In the setting of frequency estimation, established bounds on this tradeoff are either nonquantitative, or far from what is known to be attainable. In this paper, we use information-theoretical methods to significantly improve established bounds. We also show that the new bounds are attainable for binary inputs. Furthermore, our methods lead to improved frequency estimators, which we experimentally show to outperform state-of-the-art methods.
局部差分隐私下改进的频率估计
本地差分隐私协议是用于数据聚合的随机协议,当单个用户不信任数据聚合器并将其私有数据提供给聚合器时。在这样的协议中,在用户隐私和聚合器实用程序之间存在一个基本的权衡。在频率估计的设置中,这种权衡的既定界限要么是非定量的,要么与已知的可实现的界限相去甚远。在本文中,我们使用信息理论方法来显著改进已建立的边界。我们还证明了新的界对于二进制输入是可以达到的。此外,我们的方法导致改进的频率估计器,我们实验表明,其优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信