Content-based trust and bias classification via biclustering

Dávid Siklósi, B. Daróczy, A. Benczúr
{"title":"Content-based trust and bias classification via biclustering","authors":"Dávid Siklósi, B. Daróczy, A. Benczúr","doi":"10.1145/2184305.2184314","DOIUrl":null,"url":null,"abstract":"In this paper we improve trust, bias and factuality classification over Web data on the domain level. Unlike the majority of literature in this area that aims at extracting opinion and handling short text on the micro level, we aim to aid a researcher or an archivist in obtaining a large collection that, on the high level, originates from unbiased and trustworthy sources. Our method generates features as Jensen-Shannon distances from centers in a host-term biclustering. On top of the distance features, we apply kernel methods and also combine with baseline text classifiers. We test our method on the ECML/PKDD Discovery Challenge data set DC2010. Our method improves over the best achieved text classification NDCG results by over 3--10% for neutrality, bias and trustworthiness. The fact that the ECML/PKDD Discovery Challenge 2010 participants reached an AUC only slightly above 0.5 indicates the hardness of the task.","PeriodicalId":230983,"journal":{"name":"WebQuality '12","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WebQuality '12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2184305.2184314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In this paper we improve trust, bias and factuality classification over Web data on the domain level. Unlike the majority of literature in this area that aims at extracting opinion and handling short text on the micro level, we aim to aid a researcher or an archivist in obtaining a large collection that, on the high level, originates from unbiased and trustworthy sources. Our method generates features as Jensen-Shannon distances from centers in a host-term biclustering. On top of the distance features, we apply kernel methods and also combine with baseline text classifiers. We test our method on the ECML/PKDD Discovery Challenge data set DC2010. Our method improves over the best achieved text classification NDCG results by over 3--10% for neutrality, bias and trustworthiness. The fact that the ECML/PKDD Discovery Challenge 2010 participants reached an AUC only slightly above 0.5 indicates the hardness of the task.
基于内容的双聚类信任和偏见分类
本文在领域层面上改进了Web数据的信任、偏差和事实分类。与该领域的大多数文献不同,这些文献旨在提取意见并在微观层面上处理短文本,我们的目标是帮助研究人员或档案保管员获得大量的收藏,这些收藏在高层次上源于公正和值得信赖的来源。我们的方法在主项双聚类中生成与中心的Jensen-Shannon距离的特征。在距离特征的基础上,我们应用核方法,并结合基线文本分类器。我们在ECML/PKDD Discovery Challenge数据集DC2010上测试了我们的方法。我们的方法在中立性、偏倚性和可信度方面比最佳的文本分类NDCG结果提高了3- 10%以上。ECML/PKDD发现挑战2010参与者的AUC仅略高于0.5,这一事实表明了任务的难度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信