Extracting Physical Events from Digital Chatter for Covid-19

Vikram Nagapudi, ArchBishop Mitty, Ameeta Agrawal, N. Bulusu
{"title":"Extracting Physical Events from Digital Chatter for Covid-19","authors":"Vikram Nagapudi, ArchBishop Mitty, Ameeta Agrawal, N. Bulusu","doi":"10.1109/SMARTCOMP52413.2021.00082","DOIUrl":null,"url":null,"abstract":"By June 3, 2021, the US experienced over 33 million total cases of Covid-19, surpassing 592,000 deaths. In response, the Centers for Disease Control and Prevention (CDC) advised masking, social distancing and avoiding mass gatherings. In this work, we seek to automatically identify physical mass gathering events including dates and locations from digital chatter, i.e., social media data. We also study spread and sentiment associated with such large gathering events, finding a moderate negative correlation between large public gatherings, overall sentiment, and reported Covid-19 case numbers post event.","PeriodicalId":330785,"journal":{"name":"2021 IEEE International Conference on Smart Computing (SMARTCOMP)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Smart Computing (SMARTCOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP52413.2021.00082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

By June 3, 2021, the US experienced over 33 million total cases of Covid-19, surpassing 592,000 deaths. In response, the Centers for Disease Control and Prevention (CDC) advised masking, social distancing and avoiding mass gatherings. In this work, we seek to automatically identify physical mass gathering events including dates and locations from digital chatter, i.e., social media data. We also study spread and sentiment associated with such large gathering events, finding a moderate negative correlation between large public gatherings, overall sentiment, and reported Covid-19 case numbers post event.
从Covid-19的数字聊天中提取物理事件
截至2021年6月3日,美国新冠肺炎病例总数超过3300万例,死亡人数超过59.2万人。对此,美国疾病控制与预防中心(CDC)建议人们戴口罩、保持社交距离、避免大规模集会。在这项工作中,我们试图从数字聊天(即社交媒体数据)中自动识别物理大规模聚会事件,包括日期和地点。我们还研究了与此类大型聚会活动相关的传播和情绪,发现大型公共集会、整体情绪与活动后报告的Covid-19病例数之间存在适度的负相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信