A relevance feedback scheme based on Hidden Markov Model Regression for 3D model retrieval

Zhi-yong Zhang, Bai Yang
{"title":"A relevance feedback scheme based on Hidden Markov Model Regression for 3D model retrieval","authors":"Zhi-yong Zhang, Bai Yang","doi":"10.1109/IWACI.2010.5585204","DOIUrl":null,"url":null,"abstract":"Relevance feedback is an iterative search technique to bridge the semantic gap between the high level user intention and low level data representation. This technique interactively determines a user's desired output or query concept by asking the user whether certain proposed 3D models are relevant or not. For a relevance feedback algorithm to be effective, it must grasp a user's query concept accurately. In this paper, we propose a relevance feedback framework based on Hidden Markov Model Regression (HMMR) in content-based 3D model retrieval systems. Given a 3D model retrieval system, we collect and store user's feedback and use HMMR to enhance the retrieval performances. Experimental results show that this algorithm achieves higher search accuracy than traditional query refinement schemes.","PeriodicalId":189187,"journal":{"name":"Third International Workshop on Advanced Computational Intelligence","volume":"242 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Workshop on Advanced Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWACI.2010.5585204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Relevance feedback is an iterative search technique to bridge the semantic gap between the high level user intention and low level data representation. This technique interactively determines a user's desired output or query concept by asking the user whether certain proposed 3D models are relevant or not. For a relevance feedback algorithm to be effective, it must grasp a user's query concept accurately. In this paper, we propose a relevance feedback framework based on Hidden Markov Model Regression (HMMR) in content-based 3D model retrieval systems. Given a 3D model retrieval system, we collect and store user's feedback and use HMMR to enhance the retrieval performances. Experimental results show that this algorithm achieves higher search accuracy than traditional query refinement schemes.
基于隐马尔可夫模型回归的三维模型检索相关反馈方案
相关性反馈是一种迭代搜索技术,用于弥合高层次用户意图和低层次数据表示之间的语义差距。该技术通过询问用户所提出的某些3D模型是否相关,以交互式方式确定用户想要的输出或查询概念。相关性反馈算法要想有效,必须准确把握用户的查询概念。在基于内容的三维模型检索系统中,提出了一种基于隐马尔可夫模型回归的相关反馈框架。针对一个三维模型检索系统,我们收集和存储用户反馈,并利用HMMR来提高检索性能。实验结果表明,该算法比传统的查询优化方案具有更高的搜索精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信