Improving Equity Premium Forecasts by Incorporating Structural Break Uncertainty

Jing Tian, Qing Zhou
{"title":"Improving Equity Premium Forecasts by Incorporating Structural Break Uncertainty","authors":"Jing Tian, Qing Zhou","doi":"10.1111/acfi.12240","DOIUrl":null,"url":null,"abstract":"This article compares five alternative methods for directly dealing with structural break uncertainty in forecasting the U.S. equity premium using 30 widely used bivariate and multivariate predictive regressions. We find that two recently developed methods – Robust Optimal Weights on Observations and Forecast Combination across Estimation Windows – outperform the conventional rolling window and postbreak estimation methods. This result indicates that very early historical information is beneficial for U.S. equity premium forecasting but should be discounted to incorporate structural break uncertainty.","PeriodicalId":134477,"journal":{"name":"ARN Wiley-Blackwell Publishers Journals","volume":"1110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ARN Wiley-Blackwell Publishers Journals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/acfi.12240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This article compares five alternative methods for directly dealing with structural break uncertainty in forecasting the U.S. equity premium using 30 widely used bivariate and multivariate predictive regressions. We find that two recently developed methods – Robust Optimal Weights on Observations and Forecast Combination across Estimation Windows – outperform the conventional rolling window and postbreak estimation methods. This result indicates that very early historical information is beneficial for U.S. equity premium forecasting but should be discounted to incorporate structural break uncertainty.
通过纳入结构性突破不确定性改善股票溢价预测
本文比较了在预测美国股票溢价时直接处理结构断裂不确定性的五种替代方法,使用了30种广泛使用的双变量和多变量预测回归。我们发现最近发展的两种方法-观测值鲁棒最优权重和跨估计窗口的预测组合-优于传统的滚动窗口和断点估计方法。这一结果表明,非常早期的历史信息有利于美国股票溢价预测,但应考虑到结构性突破的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信