Short-term Electric Load Forecasting in Microgrids: Issues and Challenges

H. Marzooghi, K. Emami, P. Wolfs, B. Holcombe
{"title":"Short-term Electric Load Forecasting in Microgrids: Issues and Challenges","authors":"H. Marzooghi, K. Emami, P. Wolfs, B. Holcombe","doi":"10.1109/AUPEC.2018.8757874","DOIUrl":null,"url":null,"abstract":"This paper compares performance of three well-known short-term load forecasting (STLF) methodologies in microgrid applications. The chosen methods include: i) seasonal auto-regressive integrated moving average with exogenous variables, ii) neural networks, and iii) wavelet neural networks. These methods utilise combinations of historical load data and metrological variables to predict the load of individual customers in a microgrid over the next day. This is essential for scheduling, management and control of microgrid resources. So far, the existing STLF methodologies have been successfully used for the aggregated load forecasting in transmission and distribution systems. Nevertheless, their prediction accuracy in microgrid applications, where diversity is low and considerable changes in the load of customers can be observed in a short period of time, is not investigated. The random and chaotic nature of individual customers’ loads make STLF challenging; hence, this paper aims to address the issues for the above methodologies in microgrids.","PeriodicalId":314530,"journal":{"name":"2018 Australasian Universities Power Engineering Conference (AUPEC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Australasian Universities Power Engineering Conference (AUPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUPEC.2018.8757874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper compares performance of three well-known short-term load forecasting (STLF) methodologies in microgrid applications. The chosen methods include: i) seasonal auto-regressive integrated moving average with exogenous variables, ii) neural networks, and iii) wavelet neural networks. These methods utilise combinations of historical load data and metrological variables to predict the load of individual customers in a microgrid over the next day. This is essential for scheduling, management and control of microgrid resources. So far, the existing STLF methodologies have been successfully used for the aggregated load forecasting in transmission and distribution systems. Nevertheless, their prediction accuracy in microgrid applications, where diversity is low and considerable changes in the load of customers can be observed in a short period of time, is not investigated. The random and chaotic nature of individual customers’ loads make STLF challenging; hence, this paper aims to address the issues for the above methodologies in microgrids.
微电网短期负荷预测:问题与挑战
本文比较了三种知名的短期负荷预测方法在微电网应用中的性能。选择的方法包括:i)季节性自回归外生变量积分移动平均,ii)神经网络和iii)小波神经网络。这些方法利用历史负荷数据和计量变量的组合来预测微电网中个人客户在第二天的负荷。这对于微电网资源的调度、管理和控制至关重要。目前,已有的STLF方法已成功地应用于输配电系统的总负荷预测。然而,它们在微电网应用中的预测准确性没有进行研究,因为微电网的多样性很低,而且在短时间内可以观察到客户负荷的显著变化。个人客户负载的随机性和混沌性使STLF具有挑战性;因此,本文旨在解决微电网中上述方法的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信