Ideal Regularized Kernel Subspace Alignment for Unsupervised Domain Adaptation in Hyperspectral Image Classification

Wenqi Fan, Tianhui Wei, Jiangtao Peng, Weiwei Sun
{"title":"Ideal Regularized Kernel Subspace Alignment for Unsupervised Domain Adaptation in Hyperspectral Image Classification","authors":"Wenqi Fan, Tianhui Wei, Jiangtao Peng, Weiwei Sun","doi":"10.1109/Multi-Temp.2019.8866985","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel unsupervised domain adaption (DA) method called ideal regularized kernel subspace alignment (IRKSA) for hyperspectral image (HSI) classification. It first uses nonlinear projection to map the original source and target data into kernel space, then incorporates source labels into the source and target kernels by the ideal regularization strategy. In the next, the subspace alignment method is performed on the ideal regularized kernels to diminish the difference between source and target kernels. Finally, a classifier built on the source kernelized subspace data can be used to predict the target data. The proposed IRKSA method exploits both the sample similarity and label similarity and makes the resulting kernel more appropriate for DA tasks. Experimental results show that the performance of IRKSA is better than some classical unsupervised DA methods for the HSI classification.","PeriodicalId":106790,"journal":{"name":"2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp)","volume":"432 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Multi-Temp.2019.8866985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a novel unsupervised domain adaption (DA) method called ideal regularized kernel subspace alignment (IRKSA) for hyperspectral image (HSI) classification. It first uses nonlinear projection to map the original source and target data into kernel space, then incorporates source labels into the source and target kernels by the ideal regularization strategy. In the next, the subspace alignment method is performed on the ideal regularized kernels to diminish the difference between source and target kernels. Finally, a classifier built on the source kernelized subspace data can be used to predict the target data. The proposed IRKSA method exploits both the sample similarity and label similarity and makes the resulting kernel more appropriate for DA tasks. Experimental results show that the performance of IRKSA is better than some classical unsupervised DA methods for the HSI classification.
高光谱图像分类中无监督域自适应的理想正则化核子空间对准
提出了一种新的用于高光谱图像分类的无监督域自适应方法——理想正则化核子空间对齐方法。该方法首先利用非线性投影将原始源数据和目标数据映射到核空间中,然后通过理想正则化策略将源标签合并到源核和目标核中。其次,对理想正则化核进行子空间对齐,减小源核与目标核之间的差异。最后,在源核化子空间数据的基础上建立分类器来预测目标数据。提出的IRKSA方法利用了样本相似度和标签相似度,使得到的核更适合于数据分析任务。实验结果表明,IRKSA在HSI分类上的性能优于一些经典的无监督数据分析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信