Supervised and Unsupervised Methods in Depth Estimation

Tarek Barhoum, Balsam Eid
{"title":"Supervised and Unsupervised Methods in Depth Estimation","authors":"Tarek Barhoum, Balsam Eid","doi":"10.1109/ICCTA54562.2021.9916635","DOIUrl":null,"url":null,"abstract":"Monocular depth estimation from single images has gained increasing attention in recent years, considering that this technique is one of the most important techniques in autonomous driving. Since the contrast and parameters of the indoor images internally differ from outdoor. this work presented two methods for optimizing depth estimation using convolutional neural networks. In the first method, the indoor images were dealt by mask prediction using an encoder-decoder structure (DRN) and by proposing three separate networks as depth estimator (ResNet-50, DenseNet-161 and ResNet-152). In the second method, which depends on outdoor images, depth estimated by CNN with no ground truth depth maps by using image reconstruction technique, with left-right disparity consistency check and autoencoder architecture (Resnet-18 model). Both proposed methods showed good performance compared to the reference studies.","PeriodicalId":258950,"journal":{"name":"2021 31st International Conference on Computer Theory and Applications (ICCTA)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 31st International Conference on Computer Theory and Applications (ICCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCTA54562.2021.9916635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Monocular depth estimation from single images has gained increasing attention in recent years, considering that this technique is one of the most important techniques in autonomous driving. Since the contrast and parameters of the indoor images internally differ from outdoor. this work presented two methods for optimizing depth estimation using convolutional neural networks. In the first method, the indoor images were dealt by mask prediction using an encoder-decoder structure (DRN) and by proposing three separate networks as depth estimator (ResNet-50, DenseNet-161 and ResNet-152). In the second method, which depends on outdoor images, depth estimated by CNN with no ground truth depth maps by using image reconstruction technique, with left-right disparity consistency check and autoencoder architecture (Resnet-18 model). Both proposed methods showed good performance compared to the reference studies.
深度估计中的监督与非监督方法
单幅图像的单目深度估计是自动驾驶中最重要的技术之一,近年来受到越来越多的关注。由于室内图像的对比度和参数与室外图像内部存在差异。本文提出了两种利用卷积神经网络优化深度估计的方法。在第一种方法中,使用编码器-解码器结构(DRN)通过掩模预测处理室内图像,并提出三个独立的网络作为深度估计器(ResNet-50, DenseNet-161和ResNet-152)。第二种方法依赖于室外图像,在没有地面真实深度图的情况下,利用图像重建技术,采用左右视差一致性检查和自动编码器架构(Resnet-18模型),由CNN估计深度。与文献研究相比,两种方法均表现出良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信