Multispectral single-sensor RGB-NIR imaging: New challenges and opportunities

Xavier Soria Poma, A. Sappa, A. Akbarinia
{"title":"Multispectral single-sensor RGB-NIR imaging: New challenges and opportunities","authors":"Xavier Soria Poma, A. Sappa, A. Akbarinia","doi":"10.1109/IPTA.2017.8310105","DOIUrl":null,"url":null,"abstract":"Multispectral images captured with a single sensor camera have become an attractive alternative for numerous computer vision applications. However, in order to fully exploit their potentials, the color restoration problem (RGB representation) should be addressed. This problem is more evident in outdoor scenarios containing vegetation, living beings, or specular materials. The problem of color distortion emerges from the sensitivity of sensors due to the overlap of visible and near infrared spectral bands. This paper empirically evaluates the variability of the near infrared (NIR) information with respect to the changes of light throughout the day. A tiny neural network is proposed to restore the RGB color representation from the given RGBN (Red, Green, Blue, NIR) images. In order to evaluate the proposed algorithm, different experiments on a RGBN outdoor dataset are conducted, which include various challenging cases. The obtained result shows the challenge and the importance of addressing color restoration in single sensor multispectral images.","PeriodicalId":316356,"journal":{"name":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2017.8310105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Multispectral images captured with a single sensor camera have become an attractive alternative for numerous computer vision applications. However, in order to fully exploit their potentials, the color restoration problem (RGB representation) should be addressed. This problem is more evident in outdoor scenarios containing vegetation, living beings, or specular materials. The problem of color distortion emerges from the sensitivity of sensors due to the overlap of visible and near infrared spectral bands. This paper empirically evaluates the variability of the near infrared (NIR) information with respect to the changes of light throughout the day. A tiny neural network is proposed to restore the RGB color representation from the given RGBN (Red, Green, Blue, NIR) images. In order to evaluate the proposed algorithm, different experiments on a RGBN outdoor dataset are conducted, which include various challenging cases. The obtained result shows the challenge and the importance of addressing color restoration in single sensor multispectral images.
多光谱单传感器RGB-NIR成像:新的挑战和机遇
用单个传感器相机捕获的多光谱图像已经成为许多计算机视觉应用的一个有吸引力的替代方案。然而,为了充分发挥其潜力,必须解决颜色还原问题(RGB表示)。这个问题在包含植被、生物或高光材料的室外场景中更为明显。由于可见光和近红外光谱带的重叠,传感器的灵敏度出现了颜色失真的问题。本文对近红外(NIR)信息随全天光线变化的可变性进行了实证评估。提出了一种小型神经网络,从给定的RGBN(红、绿、蓝、近红外)图像中恢复RGB颜色表示。为了评估所提出的算法,在RGBN室外数据集上进行了不同的实验,其中包括各种具有挑战性的案例。结果表明了在单传感器多光谱图像中解决颜色恢复问题的挑战和重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信