Anderson localization to enhance light-matter interaction (Conference Presentation)

P. García
{"title":"Anderson localization to enhance light-matter interaction (Conference Presentation)","authors":"P. García","doi":"10.1117/12.2230567","DOIUrl":null,"url":null,"abstract":"Deliberately introducing disorder in low-dimensional nanostructures like photonic crystal waveguides (PCWs) [1] or photonic crystals (PCs) [2] leads to Anderson localization where light is efficiently trapped by random multiple scattering with the lattice imperfections. These disorder-induced optical modes hace been demonstrated to be very promising for cavity-quantum electrodynamics (QED) experiments where the radiative emission rate of single quantum emitters can be controlled when tuned through resonance with one of these random cavities. Our statistical analysis of the emission dynamics from single quantum dots embeded in disordered PCWs [3] provides detailed insigth about the statistical properties of QED in these complex nanostructures. In addition, using internal light sources reveals new physics in the form of nonuniversal intensity correlations between the different scattered paths within the structure which imprint the local QED properties deep inside the complex structure onto the far-field intensity pattern [2]. Finally, increasing the optical gain in PCWs allows on-chip random nanolasing where the cavity feedback is provided by the intrinsic disorder which enables highly efficient, stable, and broadband tunable lasers with very small mode volumes [4]. The figure of merit of these disorder-induced cavities is their localization length which determines to a large degree the coupling efficiency of a quantum emitter to a disorder-induced cavity as well as the efficiency of random lasing and reveals a strongly dispersive behavior and a non-trivial dependence on disorder in PCWs [5]. [1] L. Sapienza, H. Thyrrestrup, S. Stobbe, P.D. Garcia, S. Smolka, and P. Lodahl, Science 327, 1352 (2010). [2] P. D. García, S. Stobbe, I. Soellner and P. Lodahl, Physical Review Letters 109, 253902 (2012). [3] A. Javadi, S. Maibom, L. Sapienza, H. Thyrrestrup, P.D. Garcia, and P. Lodahl, Opt. Express 22, 30992 (2014). [4] J. Liu, P. D. Garcia, S. Ek, N. Gregersen, T. Suhr, M. Schubert, J. Mørk, S. Stobbe, and P. Lodahl, Nature Nanotechnology, 9, 285 (2014). [5] P.D. Garcia, A. Javadi, and P. Lodahl, In preparation.","PeriodicalId":285152,"journal":{"name":"SPIE Photonics Europe","volume":"332 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Photonics Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2230567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deliberately introducing disorder in low-dimensional nanostructures like photonic crystal waveguides (PCWs) [1] or photonic crystals (PCs) [2] leads to Anderson localization where light is efficiently trapped by random multiple scattering with the lattice imperfections. These disorder-induced optical modes hace been demonstrated to be very promising for cavity-quantum electrodynamics (QED) experiments where the radiative emission rate of single quantum emitters can be controlled when tuned through resonance with one of these random cavities. Our statistical analysis of the emission dynamics from single quantum dots embeded in disordered PCWs [3] provides detailed insigth about the statistical properties of QED in these complex nanostructures. In addition, using internal light sources reveals new physics in the form of nonuniversal intensity correlations between the different scattered paths within the structure which imprint the local QED properties deep inside the complex structure onto the far-field intensity pattern [2]. Finally, increasing the optical gain in PCWs allows on-chip random nanolasing where the cavity feedback is provided by the intrinsic disorder which enables highly efficient, stable, and broadband tunable lasers with very small mode volumes [4]. The figure of merit of these disorder-induced cavities is their localization length which determines to a large degree the coupling efficiency of a quantum emitter to a disorder-induced cavity as well as the efficiency of random lasing and reveals a strongly dispersive behavior and a non-trivial dependence on disorder in PCWs [5]. [1] L. Sapienza, H. Thyrrestrup, S. Stobbe, P.D. Garcia, S. Smolka, and P. Lodahl, Science 327, 1352 (2010). [2] P. D. García, S. Stobbe, I. Soellner and P. Lodahl, Physical Review Letters 109, 253902 (2012). [3] A. Javadi, S. Maibom, L. Sapienza, H. Thyrrestrup, P.D. Garcia, and P. Lodahl, Opt. Express 22, 30992 (2014). [4] J. Liu, P. D. Garcia, S. Ek, N. Gregersen, T. Suhr, M. Schubert, J. Mørk, S. Stobbe, and P. Lodahl, Nature Nanotechnology, 9, 285 (2014). [5] P.D. Garcia, A. Javadi, and P. Lodahl, In preparation.
安德森定位增强光-物质相互作用(会议报告)
故意在低维纳米结构中引入无序,如光子晶体波导(PCWs)[1]或光子晶体(PCs)[2],导致安德森局域化,其中光被晶格缺陷的随机多次散射有效地捕获。这些无序诱导的光学模式已被证明在腔量子电动力学(QED)实验中非常有前途,其中单个量子发射器的辐射发射速率可以通过与其中一个随机腔的共振调谐来控制。我们对嵌入无序PCWs中的单个量子点的发射动力学进行了统计分析[3],为这些复杂纳米结构中量子点的统计特性提供了详细的见解。此外,使用内部光源揭示了结构内不同散射路径之间的非普遍强度相关形式的新物理特性,这些特性将复杂结构内部深处的局部QED特性印在远场强度模式上[2]。最后,增加pcw的光学增益允许片上随机纳米化,其中腔反馈由固有无序提供,从而实现高效,稳定和宽带可调谐的激光器,模式体积非常小[4]。这些无序诱导腔的优点是它们的局域长度,它在很大程度上决定了量子发射极与无序诱导腔的耦合效率以及随机激光的效率,并揭示了pcw中强烈的色散行为和对无序的非琐碎依赖[5]。[1]李建军,刘建军,李建军,等。中国科学:地球科学,2010,32(1):1 - 2。[2]王晓明,王晓明,王晓明,等,García,物理学报,39(2):391 - 391(2012)。[3]张建军,张建军,张建军,等。中国生物医学工程学报,2014,29(3):444 - 444。[4] j . Liu p·d·加西亚,Ek, n . Gregersen t . Suhr M·舒伯特j . Mørk, s .施托贝和p . Lodahl自然纳米技术,285(2014)。[5]陈志强,《中国科学》。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信