Vision-based Uneven BEV Representation Learning with Polar Rasterization and Surface Estimation

Zhi Liu, Shaoyu Chen, Xiaojie Guo, Xinggang Wang, Tianheng Cheng, Hong Zhu, Qian Zhang, Wenyu Liu, Yi Zhang
{"title":"Vision-based Uneven BEV Representation Learning with Polar Rasterization and Surface Estimation","authors":"Zhi Liu, Shaoyu Chen, Xiaojie Guo, Xinggang Wang, Tianheng Cheng, Hong Zhu, Qian Zhang, Wenyu Liu, Yi Zhang","doi":"10.48550/arXiv.2207.01878","DOIUrl":null,"url":null,"abstract":"In this work, we propose PolarBEV for vision-based uneven BEV representation learning. To adapt to the foreshortening effect of camera imaging, we rasterize the BEV space both angularly and radially, and introduce polar embedding decomposition to model the associations among polar grids. Polar grids are rearranged to an array-like regular representation for efficient processing. Besides, to determine the 2D-to-3D correspondence, we iteratively update the BEV surface based on a hypothetical plane, and adopt height-based feature transformation. PolarBEV keeps real-time inference speed on a single 2080Ti GPU, and outperforms other methods for both BEV semantic segmentation and BEV instance segmentation. Thorough ablations are presented to validate the design. The code will be released at \\url{https://github.com/SuperZ-Liu/PolarBEV}.","PeriodicalId":273870,"journal":{"name":"Conference on Robot Learning","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Robot Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.01878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In this work, we propose PolarBEV for vision-based uneven BEV representation learning. To adapt to the foreshortening effect of camera imaging, we rasterize the BEV space both angularly and radially, and introduce polar embedding decomposition to model the associations among polar grids. Polar grids are rearranged to an array-like regular representation for efficient processing. Besides, to determine the 2D-to-3D correspondence, we iteratively update the BEV surface based on a hypothetical plane, and adopt height-based feature transformation. PolarBEV keeps real-time inference speed on a single 2080Ti GPU, and outperforms other methods for both BEV semantic segmentation and BEV instance segmentation. Thorough ablations are presented to validate the design. The code will be released at \url{https://github.com/SuperZ-Liu/PolarBEV}.
基于视觉的非均匀BEV表示学习与极坐标栅格化和表面估计
在这项工作中,我们提出了基于视觉的不均匀BEV表示学习的PolarBEV。为了适应相机成像的缩短效果,我们对BEV空间进行了角度和径向栅格化处理,并引入极坐标嵌入分解来模拟极坐标网格之间的关联。为了高效处理,将极网格重新排列为类似数组的规则表示。此外,为了确定二维到三维的对应关系,我们基于假设平面迭代更新BEV表面,并采用基于高度的特征变换。PolarBEV在单个2080Ti GPU上保持实时推理速度,并且在BEV语义分割和BEV实例分割方面优于其他方法。详细的烧蚀实验验证了设计的正确性。代码将在\url{https://github.com/SuperZ-Liu/PolarBEV}上发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信