An Efficient Implementation of Ant Colony Optimization on GPU for the Satisfiability Problem

Hassan A. Youness, Aziza Ibraheim, M. Moness, M. Osama
{"title":"An Efficient Implementation of Ant Colony Optimization on GPU for the Satisfiability Problem","authors":"Hassan A. Youness, Aziza Ibraheim, M. Moness, M. Osama","doi":"10.1109/PDP.2015.59","DOIUrl":null,"url":null,"abstract":"This paper focuses on solving the Boolean Satisfiability (SAT) problem using a parallel implementation of the Ant Colony Optimization (ACO) algorithm for execution on the Graphics Processing Unit (GPU) using NVIDIA CUDA (Compute Unified Device Architecture). We propose a new efficient parallel strategy for the ACO algorithm executed entirely on the CUDA architecture, and perform experiments to compare it with the best sequential version exists implemented on CPU with incomplete approaches. We show how SAT problem can benefit from the GPU solutions, leading to significant improvements in speed-up even though keeping the quality of the solution. Our results shows that the new parallel implementation executes up to 21x faster compared to its sequential counterpart.","PeriodicalId":285111,"journal":{"name":"2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP.2015.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper focuses on solving the Boolean Satisfiability (SAT) problem using a parallel implementation of the Ant Colony Optimization (ACO) algorithm for execution on the Graphics Processing Unit (GPU) using NVIDIA CUDA (Compute Unified Device Architecture). We propose a new efficient parallel strategy for the ACO algorithm executed entirely on the CUDA architecture, and perform experiments to compare it with the best sequential version exists implemented on CPU with incomplete approaches. We show how SAT problem can benefit from the GPU solutions, leading to significant improvements in speed-up even though keeping the quality of the solution. Our results shows that the new parallel implementation executes up to 21x faster compared to its sequential counterpart.
求解可满足性问题的高效GPU蚁群算法
本文的重点是解决布尔可满足性(SAT)问题,使用并行实现的蚁群优化(ACO)算法执行在图形处理单元(GPU)上使用NVIDIA CUDA(计算统一设备架构)。我们提出了一种完全在CUDA架构上执行的ACO算法的高效并行策略,并进行了实验,将其与目前在CPU上使用不完全方法实现的最佳顺序版本进行了比较。我们展示了SAT问题如何从GPU解决方案中受益,即使保持解决方案的质量,也可以显著提高加速。我们的结果表明,新的并行实现的执行速度比顺序实现快21倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信