Christos Anagnostopoulos, A. Lalos, P. Kapsalas, Duong Nguyen Van, C. Stylios
{"title":"Reviewing Deep Learning-Based Feature Extractors in a Novel Automotive SLAM Framework","authors":"Christos Anagnostopoulos, A. Lalos, P. Kapsalas, Duong Nguyen Van, C. Stylios","doi":"10.1109/MED59994.2023.10185780","DOIUrl":null,"url":null,"abstract":"Simultaneous Localization and Mapping (SLAM), which is characterized as a core problem in autonomous vehicles, involves the estimation of the vehicle’s position and the concurrent building of the map of the environment. The use of deep learning-based feature extractors has gain increasing popularity since they possess the ability to extract reliable and repeatable features from raw sensor data. However, the performance of deep learning-based approaches varies depending on the application, environmental conditions, and the type of implemented technology. In this paper, we evaluate the performance of several deep learning-based feature extractors integrated into a SLAM system, using as input real and synthetic data, which implement common odometry problems. To our knowledge, this is the first work that benchmarks the accuracy of deep-learning based algorithms in estimating the vehicle’s trajectory in specific odometry corner cases.","PeriodicalId":270226,"journal":{"name":"2023 31st Mediterranean Conference on Control and Automation (MED)","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 31st Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED59994.2023.10185780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Simultaneous Localization and Mapping (SLAM), which is characterized as a core problem in autonomous vehicles, involves the estimation of the vehicle’s position and the concurrent building of the map of the environment. The use of deep learning-based feature extractors has gain increasing popularity since they possess the ability to extract reliable and repeatable features from raw sensor data. However, the performance of deep learning-based approaches varies depending on the application, environmental conditions, and the type of implemented technology. In this paper, we evaluate the performance of several deep learning-based feature extractors integrated into a SLAM system, using as input real and synthetic data, which implement common odometry problems. To our knowledge, this is the first work that benchmarks the accuracy of deep-learning based algorithms in estimating the vehicle’s trajectory in specific odometry corner cases.