Efficient MCMC sampling with implicit shape representations

Jason Chang, John W. Fisher III
{"title":"Efficient MCMC sampling with implicit shape representations","authors":"Jason Chang, John W. Fisher III","doi":"10.1109/CVPR.2011.5995333","DOIUrl":null,"url":null,"abstract":"We present a method for sampling from the posterior distribution of implicitly defined segmentations conditioned on the observed image. Segmentation is often formulated as an energy minimization or statistical inference problem in which either the optimal or most probable configuration is the goal. Exponentiating the negative energy functional provides a Bayesian interpretation in which the solutions are equivalent. Sampling methods enable evaluation of distribution properties that characterize the solution space via the computation of marginal event probabilities. We develop a Metropolis-Hastings sampling algorithm over level-sets which improves upon previous methods by allowing for topological changes while simultaneously decreasing computational times by orders of magnitude. An M-ary extension to the method is provided.","PeriodicalId":445398,"journal":{"name":"CVPR 2011","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CVPR 2011","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2011.5995333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

We present a method for sampling from the posterior distribution of implicitly defined segmentations conditioned on the observed image. Segmentation is often formulated as an energy minimization or statistical inference problem in which either the optimal or most probable configuration is the goal. Exponentiating the negative energy functional provides a Bayesian interpretation in which the solutions are equivalent. Sampling methods enable evaluation of distribution properties that characterize the solution space via the computation of marginal event probabilities. We develop a Metropolis-Hastings sampling algorithm over level-sets which improves upon previous methods by allowing for topological changes while simultaneously decreasing computational times by orders of magnitude. An M-ary extension to the method is provided.
具有隐式形状表示的高效MCMC采样
我们提出了一种从观察图像条件下的隐式定义分割的后验分布中采样的方法。分割通常被表述为能量最小化或统计推理问题,其中最优或最可能的配置是目标。对负能量泛函取幂提供了解等效的贝叶斯解释。抽样方法能够通过计算边际事件概率来评估表征解空间的分布特性。我们开发了一种基于水平集的Metropolis-Hastings采样算法,该算法通过允许拓扑变化同时以数量级减少计算时间来改进以前的方法。提供了该方法的M-ary扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信