Explicit optimal-length locally repairable codes of distance 5

Allison Beemer, Ryan Coatney, V. Guruswami, Hiram H. López, Fernando L. Piñero
{"title":"Explicit optimal-length locally repairable codes of distance 5","authors":"Allison Beemer, Ryan Coatney, V. Guruswami, Hiram H. López, Fernando L. Piñero","doi":"10.1109/ALLERTON.2018.8636018","DOIUrl":null,"url":null,"abstract":"Locally repairable codes (LRCs) have received significant recent attention as a method of designing data storage systems robust to server failure. Optimal LRCs oer the ideal trade-o between minimum distance and locality, a measure of the cost of repairing a single codeword symbol. For optimal LRCs with minimum distance greater than or equal to 5, block length is bounded by a polynomial function of alphabet size. In this paper, we give explicit constructions of optimal-length (in terms of alphabet size), optimal LRCs with minimum distance equal to 5.","PeriodicalId":299280,"journal":{"name":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2018.8636018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Locally repairable codes (LRCs) have received significant recent attention as a method of designing data storage systems robust to server failure. Optimal LRCs oer the ideal trade-o between minimum distance and locality, a measure of the cost of repairing a single codeword symbol. For optimal LRCs with minimum distance greater than or equal to 5, block length is bounded by a polynomial function of alphabet size. In this paper, we give explicit constructions of optimal-length (in terms of alphabet size), optimal LRCs with minimum distance equal to 5.
距离为5的显式最优长度局部可修码
局部可修复代码(lrc)作为一种设计数据存储系统的方法,近年来受到了广泛的关注。最优lrc是在最小距离和局域性(修复单个码字符号的成本的度量)之间的理想权衡。对于最小距离大于等于5的最优lrc,块长度以字母大小的多项式函数为界。在本文中,我们给出了最优长度(根据字母大小)的显式结构,最小距离等于5的最优lrc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信